lim \(\frac{1}{n^2-n+2}\)
Tìm các giới hạn sau:
a) \(\lim \frac{{ - 2n + 1}}{n}\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n}\)
c) \(\lim \frac{4}{{2n + 1}}\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}}\)
a) \(\lim \frac{{ - 2n + 1}}{n} = \lim \frac{{n\left( { - 2 + \frac{1}{n}} \right)}}{n} = \lim \left( { - 2 + \frac{1}{n}} \right) = - 2\)
b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {16 - \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {16 - \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {16 - \frac{2}{{{n^2}}}} = 4\)
c) \(\lim \frac{4}{{2n + 1}} = \lim \frac{4}{{n\left( {2 + \frac{1}{n}} \right)}} = \lim \left( {\frac{4}{n}.\frac{1}{{2 + \frac{1}{n}}}} \right) = \lim \frac{4}{n}.\lim \frac{1}{{2 + \frac{1}{n}}} = 0\)
d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}} = \lim \frac{{{n^2}\left( {1 - \frac{2}{n} + \frac{3}{{{n^2}}}} \right)}}{{2{n^2}}} = \lim \frac{{1 - \frac{2}{n} + \frac{3}{{{n^2}}}}}{2} = \frac{1}{2}\)
Ở trên ta đã biết \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right) = \lim \frac{{3{n^2} + 1}}{{{n^2}}} = 3\).
a) Tìm các giới hạn \(\lim 3\) và \(\lim \frac{1}{{{n^2}}}\).
b) Từ đó, nêu nhận xét về \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right)\) và \(\lim 3 + \lim \frac{1}{{{n^2}}}\).
a) \(\lim\limits3=3\) vì \(3\) là hằng số.
Áp dụng giới hạn cơ bản với \(k=2\), ta có:\(\lim\limits\dfrac{1}{n^2}=0\).
b) \(\lim\limits\left(3+\dfrac{1}{n^2}\right)=\lim\limits3+\lim\limits\dfrac{1}{n^2}=3\).
Tìm các giới hạn sau:
a) \(\lim \frac{{3n - 1}}{n}\)
b) \(\lim \frac{{\sqrt {{n^2} + 2} }}{n}\)
c) \(\lim \frac{2}{{3n + 1}}\)
d) \(\lim \frac{{\left( {n + 1} \right)\left( {2n + 2} \right)}}{{{n^2}}}\)
a) \(\lim \frac{{3n - 1}}{n} = \lim \frac{{n\left( {3 - \frac{1}{n}} \right)}}{n} = \lim \left( {3 - \frac{1}{n}} \right) = 3 - 0 = 3\)
b) \(\lim \frac{{\sqrt {{n^2} + 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {1 + \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {1 + \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {1 + \frac{2}{{{n^2}}}} = 1 + 0 = 1\)
c) \(\lim \frac{2}{{3n + 1}} = \lim \frac{2}{{n\left( {3 + \frac{1}{n}} \right)}} = \lim \left( {\frac{2}{n}.\frac{1}{{3 + \frac{1}{n}}}} \right) = \lim \frac{2}{n}.\lim \frac{1}{{3 + \frac{1}{n}}} = 0.\frac{1}{{3 + 0}} = 0\)
d) \(\lim \frac{{\left( {n + 1} \right)\left( {2n + 2} \right)}}{{{n^2}}} = \lim \frac{{n\left( {1 + \frac{1}{n}} \right).2n\left( {1 + \frac{1}{n}} \right)}}{{{n^2}}} = \lim \frac{{2{n^2}{{\left( {1 + \frac{1}{n}} \right)}^2}}}{{{n^2}}}\)
\( = \lim 2{\left( {1 + \frac{1}{n}} \right)^2} = 2.{\left( {1 + 0} \right)^2} = 2\)
Tính các giới hạn sau:
a) \(\lim \frac{{5n + 1}}{{2n}};\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}};\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right);\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}.\)
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 0\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\)
Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} = + \infty \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)
Tính các giới hạn sau:
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 5{n^2} - 2}}\);
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}}\);
d) \(\lim \left( {4 - \frac{{{2^{n + 1}}}}{{{3^n}}}} \right)\)
e) \(\lim \frac{{{{4.5}^n} + {2^{n + 2}}}}{{{{6.5}^n}}}\)
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^n}}}\).
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).
d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).
e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).
Tại sao làm như vậy là sai nhỉ : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{\frac{1}{n}+\frac{2}{n}+...+\frac{1}{n^2}}{1+\frac{1}{n^2}}=\frac{0}{1}=0\)
phải làm theo vầy mới đúng : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{n\left(n+1\right)}{2\left(n^2+1\right)}=\lim\limits_{ }\frac{1+\frac{1}{n}}{2+\frac{1}{n}}=\frac{1}{2}\)
Mình mới học nên ko hiểu lắm, có ai giúp vớiiiiiiiiiii
Lim \(\frac{2^n+3^n}{3-4\cdot3^{n+1}}\)
lim \(\frac{4^{n+1}+10^n}{3^n-4\cdot10^{n+1}}\)
lim \(\frac{3^n\cdot4^n-2^n}{12^n+5\cdot3^{n+2}}\)
lim \(\frac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}-4\cdot3^{n+1}+2}\)
lim \(\frac{3^n-11}{1+7\cdot2^{n+1}}\)
lim \(\frac{2^n-3\cdot5^n+1}{3\cdot2^n+7\cdot4^{n+1}}\)
\(a=lim\frac{\left(\frac{2}{3}\right)^n+1}{3\left(\frac{1}{3}\right)^n-12}=-\frac{1}{12}\)
\(b=lim\frac{4\left(\frac{4}{10}\right)^n+1}{\left(\frac{3}{10}\right)^n-40}=-\frac{1}{40}\)
\(c=lim\frac{1-\left(\frac{2}{12}\right)^n}{1+45\left(\frac{3}{12}\right)^n}=\frac{1}{1}=1\)
\(d=\frac{\left(-\frac{2}{3}\right)^n+1}{-2\left(-\frac{2}{3}\right)^n-12+2\left(\frac{1}{3}\right)^n}=-\frac{1}{12}\)
\(e=\frac{1-11\left(\frac{1}{3}\right)^n}{\left(\frac{1}{3}\right)^n+14\left(\frac{2}{3}\right)^n}=\frac{1}{0}=+\infty\)
\(f=\frac{\left(\frac{2}{5}\right)^n-3+\left(\frac{1}{5}\right)^n}{3\left(\frac{2}{5}\right)^n+28\left(\frac{4}{5}\right)^n}=\frac{-3}{0}=-\infty\)
1) lim \(\frac{3n^2+5n+4}{2-n^2}\)
2) lim \(\frac{2n^3-4n^2+3n+7}{n^3-7n+5}\)
3) lim \(\left(\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1}\right)\)
4) lim \(\frac{1+3^n}{4+3^n}\)
5) lim \(\frac{4.3^n+7^{n+1}}{2.5^n+7^n}\)
1.
\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)
2.
\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)
3.
\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)
\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)
4.
\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)
5.
\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)
\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)
tìm các giới hạn
a)lim(\(\sqrt{n+1}-\sqrt{n}\))
b)lim\(\left(\sqrt{n+5n+1}-\sqrt{n^2-n}\right)\)
c)lim\(\left(\sqrt{3n^2+2n-1}-\sqrt{3n^2-4n+8}\right)\)
d)lim\(\frac{2^n+6^n-4^{n+1}}{3^n+6^{n+1}}\)
e)lim\(\frac{3^n-4^n+5^n}{3^n+4^n-5^n}\)
f)lim\(\frac{1+3+5+.....+\left(2n+1\right)}{3n^2+4}\)
g)lim[\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{n\left(n+1\right)}\)]
h)lim\(\frac{1^2+2^2+3^2+.....+n^2}{n\left(n+1\right)\left(n+2\right)}\)
a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)
b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)
c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)
d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)
e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)
f/ Ta có công thức:
\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)
\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)
g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)
h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)
\(lim\frac{3n^2+2n+5}{7n^2+n-8}\)
\(lim\left(-3n^3+5n-2\right)\)
\(lim\frac{3^n+4.7^n}{3.7^n-2}\)
\(lim\frac{x^2+2x-1}{2x^3+1}\)
\(lim\frac{1-3^n}{2^n+4.3^n}\)
\(=lim\frac{3+\frac{2}{n}+\frac{5}{n^2}}{7+\frac{1}{n}-\frac{8}{n^2}}=\frac{3}{7}\)
\(=lim-3n^3\left(1-\frac{5}{3n^2}+\frac{2}{3n^3}\right)=-\infty\)
\(=lim\frac{\left(\frac{3}{7}\right)^n+4}{3-2.\left(\frac{1}{7}\right)^n}=\frac{4}{3}\)
Câu này đề thiếu, giới hạn của x nên nó là giới hạn của hàm chứ ko phải giới hạn của dãy, mà giới hạn của hàm thì cần chỉ rõ x tiến tới bao nhiêu mới tính được
\(=lim\frac{\left(\frac{1}{3}\right)^n-1}{\left(\frac{2}{3}\right)^n+4}=-\frac{1}{4}\)