\(\dfrac{ab}{\sqrt{b}}-a\sqrt{\dfrac{b}{a}}+b\sqrt{\dfrac{a}{b}}-\dfrac{ab}{\sqrt{a}}\)
Rut gon phuong trinh \(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^6}+\sqrt{b^6}}{a-b}\)
A \(\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
B\(\dfrac{\sqrt{ab}-2b}{\sqrt{a}-\sqrt{b}}\)
C \(\dfrac{2b}{\sqrt{a}-\sqrt{b}}\)
D\(\dfrac{\sqrt{ab}-2a}{\sqrt{a}-\sqrt{b}}\)
Giup minh chon dap an dung
Thực hiện phép tính.
a) \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right)\sqrt{ab}\)
b) \(\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right).a^2b^2.\sqrt{\dfrac{n}{m}}\)
Giải chi tiết ra hộ mình với ạ, mình cảm ơn ạ.
Cho biểu thức A = \(\left(\dfrac{\sqrt{ab}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{b}-\sqrt{a}}+1\right):\left(\dfrac{\sqrt{ab}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{a}-\sqrt{b}}-1\right)\)
Cho \(\sqrt{ab}+1=4.\sqrt{b}\), tìm max của biểu thức A.
Đăt\(\sqrt{a}\)=x, \(\sqrt{b}\)=y (x,y>0)
=>xy+1=4y => 4y≥ \(2\sqrt{xy}\)=>\(2\sqrt{y}\)≥\(\sqrt{x}\)=> 4y≥x=> 4≥ \(\dfrac{x}{y}\)=> \(\dfrac{1}{4}\)≤\(\dfrac{y}{x}\)=>\(\dfrac{-1}{4}\)≥\(\dfrac{-y}{x}\)
Xét:A=(\(\dfrac{xy+y}{x+y}\)+\(\dfrac{xy+x}{y-x}\)+1):(\(\dfrac{xy+y}{x+y}\)+\(\dfrac{xy+x}{x-y}\)-1)
= \(\dfrac{-2y^2\left(x+1\right)}{\left(x-y\right)\left(x+y\right)}\).\(\dfrac{\left(x-y\right)\left(x+y\right)}{2xy\left(x+1\right)}\)
=> A= \(\dfrac{-y}{x}\)≤\(\dfrac{-1}{4}\)
Dấu "=" xảy ra <=> xy=1 và x=4y <=> x=2, y=\(\dfrac{1}{2}\) <=> a =4, b=\(\dfrac{1}{4}\)
Vậy Max A =\(\dfrac{-1}{4}\) <=> a=4, b=\(\dfrac{1}{4}\)
\(A=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
\(B=\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}-a}\dfrac{a+b}{\sqrt{ab}}\right)\)
a. Rút gọn biểu thức
b. Tìm giá trị nguyên của x để biểu thức có giá trị nguyên
chỗ đầu mình nhầm B = \(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(....\right)\)
Rút gọn biểu thức sau:
a) A= \(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
b) B=\(\left(\dfrac{2}{\sqrt{a}-\sqrt{b}}-\dfrac{2\sqrt{a}}{a\sqrt{a}+b\sqrt{b}}.\dfrac{a\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\right):4\sqrt{ab}\)
giúp mình với ạ, mk cần gấp lắm
\(\dfrac{ab}{\sqrt{b}}-a\sqrt{\dfrac{b}{a}}+b\sqrt{\dfrac{a}{b}}-\dfrac{ab}{\sqrt{a}}\)
\(\dfrac{ab}{\sqrt{b}}-a\sqrt{\dfrac{b}{a}}+b\sqrt{\dfrac{a}{b}}-\dfrac{ab}{\sqrt{a}}\\ =\dfrac{ab}{\sqrt{b}}-\dfrac{a\sqrt{b}}{\sqrt{a}}+\dfrac{b\sqrt{a}}{\sqrt{b}}-\dfrac{ab}{\sqrt{a}}\\ =\dfrac{ab+b\sqrt{a}}{\sqrt{b}}-\dfrac{a\sqrt{b}+ab}{\sqrt{a}}\\ =\dfrac{\sqrt{b}\left(a\sqrt{b}+\sqrt{ab}\right)}{\sqrt{b}}-\dfrac{\sqrt{a}\left(\sqrt{ab}+\sqrt{a}b\right)}{\sqrt{a}}\\ =a\sqrt{b}+\sqrt{ab}-\sqrt{ab}+\sqrt{a}b=a\sqrt{b}+b\sqrt{a}\)
P=\(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}-\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)
a) Rút gọn
b) Tính P khi a=16 và b=4
a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a\ne b\end{matrix}\right.\)
P = \(\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\left(\dfrac{a+\sqrt{ab}+b-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)
= \(\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\dfrac{\sqrt{a}-\sqrt{b}}{a-b}\)
= \(\dfrac{1}{a-\sqrt{ab}+b}\)
b) có a = 16 và b = 4 (thoả mãn ĐKXĐ)
Thay a = 16, b =4 vào P có:
P = \(\dfrac{1}{16-\sqrt{16.4}+4}\)= \(\dfrac{1}{12}\)
Vậy tại a =16, b = 4 thì P = \(\dfrac{1}{12}\)
rút gọn biểu thức
A=\(\dfrac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\dfrac{1}{a^2+\sqrt{a}}\) với a >0
B=\(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\) với a>0 b>0 và a khác b
C=\(\dfrac{a\sqrt{b}+b}{a-b}.\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\) với a>b>0
a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)
\(=a-1\)
b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)
c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)
Rút gọn biểu thức:
A = (\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\) - \(\sqrt{xy}\)) + (\(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\))
B = (\(\sqrt{a}\) + \(\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)) : (\(\dfrac{a}{\sqrt{ab}}\) + \(\dfrac{b}{\sqrt{ab-a}}\) - \(\dfrac{a+b}{\sqrt{ab}}\))
C = \(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}\) + \(\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\)(\(\dfrac{\sqrt{b}}{a-\sqrt{ab}}\) + \(\dfrac{\sqrt{b}}{a+\sqrt{ab}}\))
D = (\(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\) - \(\dfrac{x\sqrt{x}-y\sqrt{y}}{x-y}\)) . \(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{x\sqrt{x}+y\sqrt{y}}\)