Chứng minh rằng với mọi số nguyên dương n,ta luôn có:
\([\left(27n+5\right)^7+10]^7+[\left(10n+27\right)^7+5]^7+[\left(5n+10\right)^7+27]^7\)
chia hết cho 42
Chứng minh với mọi số nguyên dương n, ta luôn có:
\(\left[\left(27n+5\right)^7+10\right]^7+\left[\left(10n+27\right)^7+5\right]^7+\left[\left(5n+10\right)^7+27\right]^7\) chia hết cho 42
Lời giải:
Đặt cả biểu thức to là $P$
Với mọi số tự nhiên $n$, áp dụng định lý Fermat nhỏ:
\(n^7\equiv n\pmod 7\) \(\Leftrightarrow n^7-n\vdots 7(1)\)
\(n^7-n=n(n^6-1)=n(n-1)(n+1)(n^2+n+1)(n^2-n+1)\) có $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 6$
\(\Rightarrow n^7-n\vdots 6(2)\)
Từ \((1);(2)\Rightarrow n^7-n\vdots 42\) hay \(n^7\equiv n\pmod {42}\) (do 6 và 7 nguyên tố cùng nhau)
Áp dụng tính chất trên vào bài toán:
\([(27n+5)^7+10]^7\equiv (27n+5)^7+10\equiv 27n+5+10\pmod {42}(*)\)
\([(10n+27)^7+5]^7\equiv (10n+27)^7+5\equiv 10n+27+5\pmod {42}(**)\)
\([(5n+10)^7+27]^7\equiv (5n+10)^7+27\equiv 5n+10+27\pmod {42}(***)\)
Cộng theo vế:
\(\Rightarrow P\equiv 27n+5+10+10n+27+5+5n+10+27\)
\(\equiv 42n+84\equiv 0\pmod {42}\)
Hay $P\vdots 42$
Ta có đpcm.
1. Giải hệ phương trình \(\left\{{}\begin{matrix}3x^2+y^2+4xy=8\\\left(x+y\right)\left(x^2+xy+2\right)=8\end{matrix}\right.\)
2. chứng minh rằng với moi số nguyên n ta luôn có \(\left[\left(27n+5\right)^7+10\right]^7+\left[\left(10n+27\right)^7+5\right]^7+\left[\left(5n+10\right)^7+27\right]^7⋮42\)
1. \(\left\{{}\begin{matrix}3x^2+y^2+4xy=8\left(1\right)\\\left(x+y\right)\left(x^2+xy+2\right)=8\end{matrix}\right.\)
=> \(3x^2+3xy+xy+y^2=\left(x+y\right)\left(x^2+xy+2\right)\)
<=> \(\left(x+y\right)\left(3x+y\right)=\left(x+y\right)\left(x^2+xy+2\right)=0\)
<=> \(\left(x+y\right)\left(x^2+xy+2-3x-y\right)=0\)
<=> \(\left[{}\begin{matrix}x=-y\\x^2+xy+2-3x-y=0\end{matrix}\right.\)
TH1: x = -y thay vào pt (1), ta được:
3y2 + y2 - 4y2 = 8
<=> 0y = 8 (vô lí)
TH2: \(x^2+xy+2-3x-y=0\)
<=> x (x + y) - (x + y) - 2(x - 1) = 0
<=> (x - 1)(x + y) - 2(X - 1) = 0
<=> (x - 1)(x + y - 2) = 0
<=> \(\left[{}\begin{matrix}x=1\\x+y-2=0\end{matrix}\right.\)
Với x = 1 thay vào pt (1) -> 3 + y2 + 4y = 8
<=> y2 + 4y - 5 = 0 <=> (y + 5)(y - 1) = 0
<=> \(\left[{}\begin{matrix}y=-5\\y=1\end{matrix}\right.\)
Với x + y - 2 = 0 => x = 2 - y thay vào pt (1)
=> 3(2 - y)2 + y2 + 4(2 - y)y = 8
<=> 3y2 - 12y + 12 + y2 + 8 - 4y2 = 8
<=> 12 = 12y <=> y= 1 => x = 2 - 1 = 1
Vậy ....
\(c,31,8^2-2.31,8.21,8+21,8^2\)
Bài 12 : chứng minh rằng với mọi số nguyên n thì
a, \(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
b, \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Chứng minh rằng
a) \(\left(7^6+7^5-7^4\right)\)chia hết cho 55
b) \(\left(81^7-27^9-9^{93}\right)\)chia hết cho 405
a)7^6+7^5-7^4=7^4x(7^2+7-1)=7^4x55
Vì 55 chia hết cho 55 nên;7^4x55 chia hết cho 55
hay (7^6+7^5-7^4)chia hết cho 55
b)81^7-27^9-9^93
=3^18-3^27-3^26
=3^24x(3^2-3-1)
=3^16x5
=3^22x3^4x5
=3^22x405
vì 405 chia hết cho 405 nên.......hay....
a)
74.(72+71-1)
=7.55
vay (76+75-1)chia hết cho 55
b) chứng minh tương tự nha
Tính a)
\(A=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)
b) \(M=\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}}}với x=7\)
\(A=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)
\(=\frac{2^3\left(2^{27}.5^7+2^{10}.5^{27}\right)}{2^{27}.5^7+2^{10}.5^{27}}\)
\(=2^3=8\)
\(\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}+\frac{2^{13}.5^7\left(2^{17}+5^{20}\right)}{2^{10}.5^7\left(2^{17}+5^{20}\right)}=2^3=8\)
Chứng minh rằng \(n^4+7\left(7+2n^2\right)\) chia hết cho 64 với mọi n là số lẻ.
Tính giá trị biểu thức:
a) \(\left(x-10\right)^2-x.\left(x+8\right)với\)\(x=0,98\)
b) \(x^3-9x^2+27.x-27\) với x =5
c) \(6x.\left(2x-7\right)-\left(3x-5\right).\left(4x+7\right)\) tại x = \(-2\)
a) \(\left(x-10\right)^2-x\left(x+8\right)=-12x+100=-11,76+100=88,24\)
b) \(x^3-9x^2+27x-27=\left(x-3\right)^3=\left(5-3\right)^3=8\)
c) \(6x\left(2x-7\right)-\left(3x-5\right)\left(4x+7\right)=-43x+35=121\)
\(a)\) \(\left(x-10\right)^{^2}-x.\left(x+8\right)\) \(với\) \(x=0,98\)
\(=-12x+100\)
\(=-11,76+100\)
\(=88,24\)
\(b)\) \(x^3-9x^2+27.x-27\) \(với\) \(x=5\)
\(=\left(x-3\right)^3\)
\(=\left(5-3\right)^3\)
\(=8\)
\(c)\)\(6x.\left(2x-7\right)-\left(3x-5\right).\left(4x+7\right)\) \(tại\) \(x=-2\)
\(=-43+35\)
\(=121\)
Chúc bạn hôc tốt nha ❤
A=\(\dfrac{2^{30}\cdot5^7+3^{13}\cdot5^{27}}{2^{27}\cdot5^7+2^{10}\cdot5^{27}}\)
M=\(\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+6\right)^{\left(x+5\right)}}}}\) tại x=7
a: \(=\dfrac{2^{13}\cdot5^7\left(2^{17}+5^{20}\right)}{2^{10}\cdot5^7\left(2^{17}+5^{20}\right)}=2^3\)
b: \(M=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)
\(=3^{2\cdot1\cdot13\cdot12}=3^{312}\)
Chứng tỏ rằng với mọi số nguyên n thì :
a) \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn chia hết cho 2
b) \(B=n^2+n+3\)không chia hết cho 2 .
a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)
b) \(B=n\left(n+1\right)+3\)
Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2
\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)
Nếu n là số chẵn thì (n + 6) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Nếu n là số lẻ thì (n + 7) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2
a) Do n + 6 và n + 7 là hai số nguyên liên tiếp nên 1 trong 2 số có một số chẵn => tích của chúng luôn chia hết cho 2
b) n2 + n + 3
= n(n + 1) + 3
n và n + 1 là 2 số liên tiếp nên tích của chúng luôn chia hết cho 2, mà 3 không chia hết cho 2, nên:
n2 + n + 3 không chia hết cho 2