Cho a \(\in\) Z
a) Chứng tỏ rằng a2 \(\ge\) 0; -a2 \(\le\) 0
b) Tìm giá trị nhỏ nhất của biểu thức : (x - 11)2 + 2020
c) Tìm giá trị lớn nhất của biểu thức : -(x + 64)2 + 6789
Bài 5. a) Cho a ∈ Z. Chứng tỏ rằng: a2 ≥ 0; – a2 ≤ 0.
b) Tìm giá trị nhỏ nhất của: A = (x – 8)2 + 2003.
c) Tìm giá trị lớn nhất của: B = – (x + 5)2 + 9. Mik sẽ tick
TL
b,=2005
Sai mik sorry nha cả mik làm phần B thôi
Hok tốt
TL
Câu A
Vì 0 là số tự nhiên nhỏ nhất
Hok tốt
k mik nha
TL
b,=2005
Sai mik sorry nha cả mik làm phần B thôi
Hok tốt
1. Cho a > 0 , b > 0 và a > b , chứng tỏ rằng : 1/a < 1/b
2. Cho a,b là hai số bất kì , chứng tỏ rằng : ( a + b )2/2 ≥ 2ab
3. Cho a,b là hai số bất kì , chứng tỏ rằng : a2 + b2/2 ≥ ab
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
Cho n số a1, a2, a3, ... , an mà mỗi số bằng 1 hoặc -1. Gọi Sn= a1.a2+a2.a3+a3.a4+...+an-1.an+an.a1
a) Chứng tỏ: S5 khác o
b) Chứng tỏ S6 khác 0
c) Chứng tỏ rằng: Sn=0 khi và chỉ khi n chia hết cho 4
a,chứng tỏ rằng với \(\forall\) a,b\(\ge\)0 thì:
(ax+by)(bx+ay)\(\ge\)(a+b)\(^2\)xy
b, với x,y,z >0 chứng mình rằng (x+y+z)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))\(\ge\)9
1,a)cho a\(\in\)Z. Chứng tỏ rằng: a2\(\ge\)0; a2\(\le\)0;
b)tìm giá trị nhỏ nhất của: A= (x - 8)2 - 2018;
c)tìm giá trị lớn nhất của: B= -(x + 5)2 + 9
a) a^2>0. Nếu a^2= (-).(-); (+).(+) thì ta có
th1: (+) . (+) = (+) Chọn (+)2 a^2>0
th2: (-). (-) = (+) Chọn (-)2 a^2>0
Vậy...
làm bổ sung cho câu b) là : muốn A có giá trị nhỏ nhất thì (x-8)2 phải có giá trị nhỏ nhất mà giá trị nhỏ nhất của (x-8)2 là 0
=) A có giá trị nhỏ nhất là -2018
c) : muốn B có giá trị lớn nhất thì -(x+5)2 phải có giá trị lớn nhất mà -(x+5)2 có giá trị lớn nhất là \(\infty\)mà không có số nào là số lớn nhất =) B vẫn chỉ có giá trị lớn nhất là \(\infty\)
BT1
a ) Cho a > 2 và b>2 chứng minh ab>a+b
b) cho x>= 0, y >= 0, z>= 0 . Chứng minh ( x+y ) (y+z ) ( z+x )
c ) Cho a và là các số bất kì .Chứng tỏ a2+b2 chia 2 >= ab
a/
Do \(\left\{{}\begin{matrix}a>2\Rightarrow\frac{1}{a}< \frac{1}{2}\\b>2\Rightarrow\frac{1}{b}< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)
\(\Rightarrow\frac{a+b}{ab}< 1\Rightarrow a+b< ab\) (đpcm)
b/ Ko rõ đề là gì
c/ \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!
1. Chứng tỏ rằng:
P = 1/11 + 1/12 + 1/13 +...+1/70 < 5/2
2. Tìm x \(\in\)Z biết:
a) (x + 7).(x + 4) < 0
b) (2x + 3).(x - 5) \(\ge\)0
GIÚP MÌNH NHA MN!!! LÀM HẾT MÌNH TICK CHO!!!
a) Cho \(a ∈ Z \). Chứng tỏ rằng: \(a2 ≥ 0; - a2 ≤ 0\)
b) Tìm giá trị nhỏ nhất của: A = (x - 8)2 - 2018
c) Tìm giá trị lớn nhất của: B = -(x + 5)2 + 9
* Mng bt câu nào thỳ help mk nha _ Tks !!
a) Với \(\forall a\in Z\) và a≠0, ta luôn có
\(a^2=a\cdot a\) có giá trị dương(vì âm nhân âm ra dương, dương nhân dương ra dương)(1)
Với a=0, ta luôn có:
\(a^2=a\cdot a=0\cdot0=0\)(2)
Từ (1) và (2) suy ra \(a^2\ge0\forall a\)
⇒\(-a^2\le0\forall a\)
b) Ta có: \(\left(x-8\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-8\right)^2-2018\ge-2018\forall x\)
Dấu '=' xảy ra khi
\(\left(x-8\right)^2=0\Leftrightarrow x-8=0\Leftrightarrow x=8\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-8\right)^2-2018\) là -2018 khi x=8
c) Ta có: \(\left(x+5\right)^2\ge0\forall x\)
⇒\(-\left(x+5\right)^2\le0\forall x\)
⇒\(-\left(x+5\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi
\(\left(x+5\right)^2=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\)
Vậy: Giá trị lớn nhất của biểu thức \(B=-\left(x+5\right)^2+9\) là 9 khi x=-5