Cho tam giác ABC có cosB=\(\frac{7}{8}\), AC=b, \(h_b=h_a+h_c\). Tính diện tích tam giác.
Cho tam giác ABC có cosB=\(\frac{7}{8}\), AC=b, \(h_b=h_a=h_c\). Tính diện tích tam giác.
Đề bài vô lý bạn, \(h_a=h_b=h_c\Rightarrow\) tam giác đều
Thì \(cosB=\frac{7}{8}\) là vô lý
Một mảnh đất hình tam giác có độ dài 3 cạnh lần lượt là :3(m);4(m);6(m) có đường cao tương ứng là: ha;hb;hc. Tính diện tích mảnh đất biết:\(h_a;h_b;h_c\)
Tính diện tích mảnh đất biết:
\(h_a-h_b+h_c=25\)
Cho tam giác ABC. Chứng minh rằng
\(\dfrac{h_b}{h_a^2}+\dfrac{h_c}{h_b^2}+\dfrac{h_a}{h_c^2}>\dfrac{1}{r}\)
\(\dfrac{h_b}{h_a^2}+\dfrac{h_c}{h_b^2}+\dfrac{h_a}{h_c^2}=\dfrac{\dfrac{2S_{ABC}}{b}}{\dfrac{4S_{ABC}^2}{a^2}}+\dfrac{\dfrac{2S_{ABC}}{c}}{\dfrac{4S^2_{ABC}}{b^2}}+\dfrac{\dfrac{2S_{ABC}}{a}}{\dfrac{4S_{ABC}^2}{c^2}}\)
\(=\dfrac{a^2}{2bS_{ABC}}+\dfrac{b^2}{2cS_{ABC}}+\dfrac{c^2}{2aS_{ABC}}\)
\(=\dfrac{1}{2S_{ABC}}\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\)
\(\ge\dfrac{1}{2.\dfrac{a+b+c}{2}r}.\dfrac{\left(a+b+c\right)^2}{a+b+c}=\dfrac{1}{r}\)
Hình như có dấu = chứ nhỉ
Đẳng thức xảy ra khi tam giác ABC đều
Đề bài:
Cho tam giác ABC có độ dài 3 cạnh BC,AC,AB lần lượt là a,b,c và các đường cao tương ứng là \(h_a,h_b,h_c\).
Tam giác đó là tam giác gì khi biểu thức \(\frac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\)đạt giá trị nhỏ nhất?
Rảnh rảnh kiếm bài nhè nhẹ, mn giúp e nha!
sorry em lp 6 nen ko hieu
Cho tam giác ABC có b-c=\(\dfrac{a}{2}\)
a, SinA=2sinB-2sinC
b, \(\dfrac{1}{h_a}=\dfrac{1}{h_b}-\dfrac{1}{h_c}\)
\(a=2b-2c\Rightarrow sinA.2R=2sinB.2R-2sinC.2R\)
\(\Rightarrow sinA=2sinB-2sinC\)
\(ah_a=bh_b=ch_c\Rightarrow\left(2b-2c\right)h_a=bh_b=ch_c\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{h_a}=\dfrac{2b-2c}{b}.\dfrac{1}{h_b}\\\dfrac{1}{h_a}=\dfrac{2b-2c}{c}.\dfrac{1}{h_c}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{h_a}=\dfrac{1}{h_b}-\dfrac{1}{h_c}+\left(\dfrac{b}{c.h_c}-\dfrac{c}{b.h_b}\right)\)
Câu này đề sai tiếp, biểu thức \(\dfrac{b}{c.h_c}-\dfrac{c}{b.h_b}\) kia không thể bằng 0
Cho tam giác nhọn ABC có BC = a, AB = c, AC =b.
a) CMR: a2 = b2 + c2 – 2bc.cosA
b) Cho b+c=2a. CMR: \(\frac{2}{h_a}=\frac{1}{h_b}+\frac{1}{h_c}\)trong đó lần lượt là chiều cao của tam giác ứng với các cạnh a,b,c
Cho tam giác ABC. Chứng minh rằng:
a) \(S_{\Delta ABC}=\dfrac{1}{2}\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
b) \(b+c=2a\Leftrightarrow\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
c) Góc A vuông \(\Leftrightarrow m_b^2+m_c^2=5m_a^2\)
Cho tam giác nhọn ABC , AB = c, BC = a , AC = b . Trong đó b - c = \(\frac{a}{k}\)( k > 1 ). Gọi \(h_a\), \(h_b\), \(h_c\)lần lượt là các đường cao hạ từ A , B , C. CHứng minh :
a) \(\sin\widehat{A}\)= k\(\left(\sin\widehat{B}-\sin C\right)\)
b)\(\frac{1}{h_a}=k\left(\frac{1}{h_b}-\frac{1}{h_c}\right)\)
Có \(\sin\widehat{A}=\frac{h_c}{b}=\frac{h_b}{c}=\frac{h_c-h_b}{b-c}=\frac{h_b-h_c}{\frac{a}{k}}=\frac{k\left(h_b-h_c\right)}{a}\) (1)
Lại có : \(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}}\)\(\Rightarrow\)\(k\left(\sin\widehat{B}-\sin\widehat{C}\right)=\frac{k\left(h_c-h_b\right)}{a}\) (2)
(1) (2) ...
\(\sin\widehat{B}=\frac{h_a}{c}\)\(;\)\(\sin\widehat{C}=\frac{h_a}{b}\) (1)
\(\hept{\begin{cases}\sin\widehat{B}=\frac{h_c}{a}\\\sin\widehat{C}=\frac{h_b}{a}\end{cases}\Leftrightarrow\hept{\begin{cases}h_c=\sin\widehat{B}.a\\h_b=\sin\widehat{C}.a\end{cases}}}\)\(\Rightarrow\)\(k\left(\frac{1}{h_b}-\frac{1}{h_c}\right)=\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)\) (2)
Thay (1) vào (2) ta được \(\frac{k}{a}.\left(\frac{1}{\sin\widehat{C}}-\frac{1}{\sin\widehat{B}}\right)=\frac{k}{a}.\left(\frac{b}{h_a}-\frac{c}{h_a}\right)=\frac{k}{a}.\frac{\frac{a}{k}}{h_a}=\frac{1}{h_a}\)
đpcm
Cho tam giác ABC có diện tích là 1. Gọi a,b,c và ha,hb,hc tương ứng là độ dài cạnh và các đường cao của tam giác ABC.
CMR: \(\left(a^2+b^2+c^2\right)\)\(\left(h_a^2+h_b^2+h_c^2\right)\)\(\ge36\)
Theo đề bài thì ta có:
\(ah_a=bh_b=ch_c=2\)
Ta có:
\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)
\(=\left(2+2+2\right)^2=36\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\)