Bài 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nana

Cho tam giác ABC có cosB=\(\frac{7}{8}\), AC=b, \(h_b=h_a+h_c\). Tính diện tích tam giác.

Nguyễn Việt Lâm
4 tháng 4 2020 lúc 21:35

Đặt \(AB=c;BC=a\)

\(S=\frac{1}{2}ah_a=\frac{1}{2}bh_b=\frac{1}{2}ch_c\Rightarrow ah_a=bh_b=ch_c=2S\)

\(\Rightarrow\left\{{}\begin{matrix}h_a=\frac{2S}{a}\\h_b=\frac{2S}{b}\\h_c=\frac{2S}{c}\end{matrix}\right.\) \(\Rightarrow\frac{2S}{b}=\frac{2S}{a}+\frac{2S}{c}\Rightarrow\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\frac{b}{a}+\frac{b}{c}=1\)

\(cosB=\frac{7}{8}=\frac{a^2+c^2-b^2}{2ac}\Leftrightarrow b^2=a^2+c^2-\frac{7}{4}ac\)

\(\Leftrightarrow\left(\frac{a}{b}\right)^2+\left(\frac{c}{b}\right)^2-\frac{7}{4}\left(\frac{a}{b}\right)\left(\frac{c}{b}\right)=1\)

Đặt \(\left\{{}\begin{matrix}\frac{a}{b}=x>0\\\frac{c}{b}=y>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=1\\x^2+y^2-\frac{7}{4}xy=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=xy\\x^2+y^2-\frac{7}{4}xy=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=xy\\\left(x+y\right)^2-\frac{15}{4}xy=1\end{matrix}\right.\)

\(\Leftrightarrow\left(xy\right)^2-\frac{15}{4}xy-1=0\) \(\Rightarrow\left[{}\begin{matrix}xy=4\\xy=-\frac{1}{4}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=4\\xy=4\end{matrix}\right.\) \(\Rightarrow x=y=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=2\\\frac{c}{b}=2\end{matrix}\right.\) \(\Rightarrow a=c=2b\)

\(\Rightarrow p=\frac{a+b+c}{2}=\frac{5b}{2}\) \(\Rightarrow S=\sqrt{p\left(p-b\right)\left(p-2b\right)\left(p-2b\right)}=\frac{b^2\sqrt{15}}{4}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trang Nana
Xem chi tiết
Thảo Vi
Xem chi tiết
Deo Ha
Xem chi tiết
oOo Min min oOo
Xem chi tiết
phương xuyến chi
Xem chi tiết
Ân Nguyễn Ngọc
Xem chi tiết
Thảo Vi
Xem chi tiết
Miner Đức
Xem chi tiết
Hoa Nhật Trúc
Xem chi tiết