Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Khánh Ly
Xem chi tiết
Buddy
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 14:48

a)

\(\begin{array}{l}f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}{x^2} - \frac{1}{2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {{x^2} - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{1}{2}\left( {x + 1} \right) = \frac{1}{2}\left( {1 + 1} \right) = 1\end{array}\)

b) Phương trình đường thẳng \(d\) đi qua điểm \(M\left( {1;\frac{1}{2}} \right)\) và có hệ số góc bằng \(k = f'\left( 1 \right) = 1\) là: \(y - \frac{1}{2} = 1\left( {x - 1} \right) \Leftrightarrow y = x - 1 + \frac{1}{2} \Leftrightarrow y = x - \frac{1}{2}\).

 

Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại duy nhất điểm \(M\left( {1;\frac{1}{2}} \right)\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:02

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Nguyễn Thị Bình Yên
Xem chi tiết
Hoang Hung Quan
10 tháng 5 2017 lúc 9:23

Giải:

Vì đồ thị hàm số \(y=f\left(x\right)=ax+2\) đi qua điểm \(A\left(a-1;a^2+a\right)\) nên:

\(a^2+a=a\left(a-1\right)+2\)

\(\Leftrightarrow a^2+a=a^2-a+2\)

\(\Leftrightarrow2a=2\Leftrightarrow a=\dfrac{2}{2}=1\)

b) Với \(a=1\) thì \(y=f\left(x\right)=x+2\) ta có:

\(f\left(2x-1\right)=f\left(1-2x\right)\)

\(\Leftrightarrow\left(2x-1\right)+2=\left(1-2x\right)+2\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{2}{4}=\dfrac{1}{2}\)

Sky MT-P
Xem chi tiết
ngonhuminh
8 tháng 4 2018 lúc 22:24

\(\left\{{}\begin{matrix}f\left(0\right)=5\Rightarrow0+0+5\Rightarrow c=5\\f\left(1\right)=0\Rightarrow a+b+5=0\\f\left(5\right)=0\Rightarrow25a+5b+5=0\end{matrix}\right.\) \(\left\{{}\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\right.\)

tu (3) => b =-1-5a

tu (2) => a-1-5a+5 =0 => a =1 ;b =-6

y =x^2 -6x +5

y(-1) =1 +6 +5 khac 3 => loai

y(-1/2) =1/4 -6/2 +5 =1/4 +2 = 9/4 nhan

Q(1/2;9/4) thuoc dths

nguyễn hoàng lê thi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Doraemon
30 tháng 3 2017 lúc 11:28

a) f(x) = (x+2)(x-1)

f(x) > 0 với x < -2 hoặc x > 1

f(x) ≤ 0 với -2 ≤ x ≤ 1

b) y = 2x (x + 2) = 2(x+1)2 – 2

Bảng biến thiên:

Hàm số : y = \(\left(x+2\right)\left(x+1\right)=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)

Bảng biến thiên :

Đồ thị (C1) và (C2)

Hoành độ các giao điểm A và B của (C1) và (C2) là nghiệm của phương trình f(x) = 0 ⇔ x1 = -2, x2 = 1

⇔ A(-2, 0) , B(1, 6)

c) Giải hệ phương trình

\(\left\{{}\begin{matrix}\dfrac{ac-b^2}{4a}\\a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(1\right)^2+b\left(1\right)+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2,b=0,c=8\\a=-\dfrac{2}{9},b=\dfrac{16}{9},c=\dfrac{40}{9}\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
12 tháng 9 2023 lúc 23:47

Từ điểm \(y = 2\) trên \(Oy\) vẽ đường thẳng vuông góc với \(Oy\) cắt đồ thị hàm số tại điểm \(C\). Khi đó, điểm \(C\) là điểm trên đồ thị hàm số có tung độ bằng 2.

Nguyễn Hoàng Bảo Khang
Xem chi tiết
nguyen thi khanh hoa
2 tháng 10 2015 lúc 23:10

vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)

ta tính y' có:

\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)

vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)

thay b=-3 vào (*) ta tìm được a=-2

vậy a=-2;b=-3