25. Với m là tham số bất kỳ , đồ thị hs y= \(\dfrac{x+1}{\left(m^2+1\right).\sqrt{x^2-4}}\) có tất cả bao nhiêu đường tiệm cận ( tiệm cận ngang và tiệm cận đứng)
47. Số đường tiệm cận đứng của đồ thị hs y =\(\dfrac{\left(\sqrt{x+3}-2\right).sinx}{x^2-x}\)
57. Cho hs f(x) = \(\dfrac{ax+b}{cx+d}\) ( a,b,c,d thuộc R , c#0). Biết f(1)=1 , f(2)=2 và f (f(x)) =x với mọi x # \(\dfrac{-d}{c}\). Tìm tiệm cận ngang của đồ thị hs y= f(x)
47. Số đường tiệm cận đứng của đồ thị hàm số y=\(\dfrac{\left(\sqrt{x+3}-2\right).sinx}{x^2-x}\)
45. Tìm tất cả các đường tiệm cận ngang của đồ thi hs y = \(x.\left(\sqrt{x^2+2x}+x-2.\sqrt{x^2+x}\right)\)
Gọi S là tập hợp các giá trị nguyên của m sao cho đồ thị hàm số y = \(\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}\) có bốn đường tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang). Tính số phần tử của tập S
Tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số:
\(Y=\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}\)
57. Cho hs f(x) = ax +b / cx +d ( a,b,c,d thuộc R , c#0) . Biết f(1)=1 , f(2)=2 và f(f(x))=x với mọi x # -d/c. Tìm tiệm cận ngang của đồ thị hs y = f(x)
45. Tìm tất cả các đường tiệm cận ngang của đồ thị hàm số y = \(x.\left(\sqrt{x^2+2x}+x-2\sqrt{x^2+x}\right)\)