Giải phương trình vô tỉ bằng phương pháp đánh giá
\(\sqrt{x}+\sqrt{x+1}+\sqrt{x^2+x}=1\)
Giải phương trình (bằng phương pháp đánh giá): \(\sqrt{1-x^2}+\sqrt[4]{x^2+x-1}+\sqrt[6]{1-x}=1\).
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ
Giải phương trình (bằng phương pháp đánh giá): \(\sqrt{x}+\sqrt{2x+2}+\sqrt{3x+6}=6\).
đk : x >= 0
\(\sqrt{x}-1+\sqrt{2x+2}-2+\sqrt{3x+6}-3=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{2x+2-4}{\sqrt{2x+2}+2}+\dfrac{3x+6-9}{\sqrt{3x+6}+3}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x+2}+2}+\dfrac{3}{\sqrt{3x+6}+3}\right)=0\Leftrightarrow x=1\left(tm\right)\)
Giải các phương trình vô tỉ sau bằng phương pháp đặt ẩn phụ:
a)\(\sqrt{x^4+x^2+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3x}\)
b)\(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)
giải phương trình bằng phương pháp đánh giá:
\(\dfrac{\sqrt{3x-2}}{x}=\dfrac{x}{\sqrt{1-x}}\)
\(\sqrt{\left(3x-2\right)\left(1-x\right)}=x^2\) dkxd:2/3=<x=<1
ta co:\(\sqrt{\left(3x-2\right)\left(1-x\right)}=< \frac{3x-2+1-x}{2}=\frac{2x-1}{2}\)
=>\(x^2=< \frac{2x-1}{2}\)
=>\(2x^2-2x+1=< 0\)
=>\(\left(x\sqrt{2}-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=< 0\)vo ly
=>\(x=\varnothing\)
Giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ:
a) \(\sqrt{\left(1+x\right)\left(2-x\right)}=1+2x-2x^2\)
b) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)
Giải giúp phương trình vô tỉ bằng cách đặt t = \(\text{}\text{}\sqrt{10-x}+\sqrt{x-7}\)
sao mà thấy khó quá
Đặt \(t=\sqrt{10-x}+\sqrt{x-7}\) để làm gì vậy bạn? Đặt như vậy thì phương trình sẽ càng khó giải hơn á
Đk: \(-7\le x\le10\)
\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)
\(\Leftrightarrow\sqrt{10-x}-\sqrt{x+7}+\sqrt{\left(10-x\right)\left(x+7\right)}=1\)
\(\Leftrightarrow\sqrt{10-x}\left(\sqrt{x+7}+1\right)-\left(\sqrt{x+7} +1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}+1\right)\left(\sqrt{10-x}-1\right)=0\)
Dễ thấy \(\sqrt{x+7}+1>0\). Do đó:
\(\sqrt{10-x}-1=0\Leftrightarrow x=9\left(nhận\right)\)
Thử lại ta có x=9 là nghiệm duy nhất của pt đã cho.
`\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1` `ĐK: -7 <= x <= 10`
Đặt `\sqrt{10-x}-\sqrt{x+7}=t`
`<=>10-x+x+7-2\sqrt{(x+7)(10-x)}=t^2`
`<=>\sqrt{-x^2+3x+70}=17/2-[t^2]/2`
Khi đó ptr `(1)` có dạng: `t+17/2-[t^2]/2=1`
`<=>2t+17-t^2=2`
`<=>t^2-2t-15=0`
`<=>[(t=5),(t=-3):}`
`@t=5=>\sqrt{-x^2+3x+70}=17/2-5^2/2`
`<=>\sqrt{-x^2+3x+70}=-4` (Vô lí)
`@t=-3=>\sqrt{-x^2+3x+70}=17/2-[(-3)^2]/2`
`<=>-x^2+3x+70=16`
`<=>[(x=9),(x=-6):}` (t/m)
Vậy `S={-6;9}`
Giải phương trình (bằng phương pháp ẩn phụ): \(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\).
ĐKXĐ: \(x\ge1\)
Do \(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}=\sqrt{x^2-x^2+1}=1\)
Đặt \(\sqrt{x-\sqrt{x^2-1}}=t\Rightarrow\sqrt{x+\sqrt{x^2-1}}=\dfrac{1}{t}\)
Phương trình trở thành:
\(t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\Rightarrow t=1\)
\(\Rightarrow\sqrt{x-\sqrt{x^2-1}}=1\Leftrightarrow x-\sqrt{x^2-1}=1\)
\(\Leftrightarrow x-1=\sqrt{x^2-1}\)
\(\Rightarrow x^2-2x+1=x^2-1\)
\(\Rightarrow x=1\) (thỏa mãn)
Giải phương trình bằng phương pháp đánh giá:
\(\sqrt{x}\) + \(\sqrt{1-x^2}\) +\(\sqrt[4]{x}\) +\(\sqrt[4]{1-x}\) = \(\sqrt{2}\) + \(\sqrt[4]{8}\)
Giải phương trình bằng phương pháp đánh giá:
1) sqrt(x-2) + sqrt(10-x) = (x2-12x+40)(5x-x2-6)
2) [ sqrt(x+3) + sqrt(15-x) ](x+6)2 = x4 - 72x2 +1302
3) sqrt(2x-3) + sqrt(5-2x) = (3x^2-12x+14)(2x^2-x-3)