Giải phương trình (bằng phương pháp đánh giá): \(\sqrt{x}+\sqrt{2x+2}+\sqrt{3x+6}=6\).
giải phương trình bằng phương pháp đánh giá:
\(\dfrac{\sqrt{3x-2}}{x}=\dfrac{x}{\sqrt{1-x}}\)
Giải phương trình bằng phương pháp đánh giá:
1) sqrt(x-2) + sqrt(10-x) = (x2-12x+40)(5x-x2-6)
2) [ sqrt(x+3) + sqrt(15-x) ](x+6)2 = x4 - 72x2 +1302
3) sqrt(2x-3) + sqrt(5-2x) = (3x^2-12x+14)(2x^2-x-3)
Giải phương trình (bằng phương pháp ẩn phụ): \(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\).
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Giair phương trình bằng phương pháp lập phương trình tích:
\(\sqrt{x-1}+\sqrt{x^3-x^2+x+1}=1+\sqrt{x^4-1}\)
Giải phương trình (bằng phương pháp ẩn phụ): \(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)
Giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ:
a) \(\sqrt{\left(1+x\right)\left(2-x\right)}=1+2x-2x^2\)
b) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
Giải các phương trình vô tỉ sau bằng phương pháp đặt ẩn phụ:
a)\(\sqrt{x^4+x^2+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3x}\)
b)\(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)