(2y-3)(y+1)+y(y-2)=3(y+2)^2
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️
thực hiện phép chia
a (4x^5-8x^3):(-2x^3)
b(9x^3-12x^2 + 3x ) : (-3x)
c (xy^2 + 4x^2y^3 -3x^2y^4):(-1/2x^2y^3)
d[2(x-y)^3-7(y-x)^2 - (y-x)] : (x-y)
e[(x^3 - y) ^5 -2(x-y)^4 + 3(x-y)^2] :[5(x-y)^2]
Bài 2 :Giaỉ các phương trình sau
a) y(y2 -1)=y2-5y+6=0
b)y(y-\(\dfrac{1}{2}\))(2y+5)=0
c)4y2+1=4y
d)y2-2y=80
e)(2y-1)2-(y+3)2=0
f)2y2-11y=0
g)(2y-3)(y+1)+y(y-2)=3(y+2)2
h)(y2-2y+1)-9=0
i)y2+5y+6=0
k) y2+7y+2=o
l)y2-y-12=0
m)x2+2x+7=0
n)y3-y2-21y+45=0
p)2y3-5y2+8y-3=0
q) (y+3)2 +(y+5)2=0
c.
\(4y^2+1=4y\)
\(\Leftrightarrow4y^2-4y+1=0\)
\(\Leftrightarrow4y^2-2y-2y+1=0\)
\(\Leftrightarrow2y\left(2y-1\right)-\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)^2=0\)
\(\Leftrightarrow y=0\)
d.
\(y^2-2y=80\)
\(\Leftrightarrow y^2-2y-80=0\)
\(\Leftrightarrow y^2-10y+8y-80=0\)
\(\Leftrightarrow y\left(y-10\right)+8\left(y-10\right)=0\)
\(\Leftrightarrow\left(y+8\right)\left(y-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+8=0\\y-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-8\\y=10\end{matrix}\right.\)
giải phương trinhf
y/2(y-3) = 2y/(y+1)(y-3) - y / 2y+ 2
\(\dfrac{y}{2\left(y-3\right)}=\dfrac{2y}{\left(y+1\right)\left(y-3\right)}-\dfrac{y}{2y+2}\)
\(DKXD:y\ne-1;y\ne3\)
<=>\(\dfrac{y\left(y+1\right)}{2\left(y-3\right)\left(y+1\right)}=\dfrac{4y}{2\left(y-3\right)\left(y+1\right)}-\dfrac{y\left(y-3\right)}{2\left(y+1\right)\left(y-3\right)}\)
=>y2+y=4y-y2+3y
<=>2y2-6y=0
<=>2y(y-3)=0
\(\left[{}\begin{matrix}y=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=3\left(KTM\right)\end{matrix}\right.\)
vay..........
Phân tích các đa thức sau thành nhân tử : 14x^2y-21xy^2+28x^2y^2 x(x+y)-5x-5y 10x(x-y)-8(y-x ) (3x+1)^2 -(x+1)^2 x^3+y^3+z^3-3xyz 5x^2-10xy+5y^2-20z^2 x^3-x+3x^2y+3x^2y+3xy^2+y^3-y Mn đc lời giải chi tiết từng bước làm 1
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
giải hệ pt (đặt ẩn phụ )
a) x+2/x+1 + 2/y-2 =6
5/x+1 -1/y-2 =3
b) 2/2x-y +3/x-2y =1/2
2/2x-y -1/x-2y =1/18
c) 2|x-6| +3|y+1| =5
5|x-6| -4|y+1| =1
d) |x| +|y-3| =1
y - |x| =3
a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
=>x+1=1 và y-2=1/2
=>x=0 và y=5/2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)
=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6
=>x-2y=9 và 2x-y=12
=>x=5; y=-2
c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
Rút gọn:
1. n^2(n-1)(n+1) - (n^2+2)(n^2-2)
2. (y+3)(y-3)(y^2+9)- (y^2-4)(y^2+4)
3.(x - 2y+3)(x+2y-3) - (x-2y)(x+2y)
4. (a+b+c)^2
5.(a+b-c)^2
6. (a-b-c)^2
1)\(n^2\left(n-1\right)\left(n+1\right)-\left(n^2+2\right)\left(n^2-2\right)=n^2\left(n^2-1\right)-\left(n^4-4\right)=n^4-n^2-n^4+4\)
\(=-n^2+4\)
2)\(\left(y+3\right)\left(y-3\right)\left(y^2+9\right)-\left(y^2-4\right)\left(y^2+4\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-16\right)\)
\(=y^4-81-y^4+16=-65\)
3)\(\left(x-2y+3\right)\left(x+2y-3\right)-\left(x-2y\right)\left(x+2y\right)=\left(x+3\right)^2-4y^2-\left(x^2-4y^2\right)\)
\(=x^2+6x+9-4y^2-x^2+4y^2=6x+9\)
4)\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
5)\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)
6)\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)
Học tốt nha bạn !
(2y-3)(y+1)+y(y-2)=3(y+2)^2
(2y - 3)(y + 1) + y(y - 2) = 3(y + 2)²
⇔ 2y² + 2y - 3y - 3 + y² - 2y = 3(y² + 4y + 4)
⇔ 3y² - 3y - 3 = 3y² + 12y + 12
⇔ 3y² -3y - 3y² -12y = 12 + 3
⇔ -15y = 15
⇔ y = -1
Vậy S = {-1}
\(\left(2y-3\right).\left(y+1\right)+y.\left(y+2\right)=3\left(y+2\right)^2\\ \Leftrightarrow2y^2-y-3+y^2+2y=3y^2+12y+12\\ \Leftrightarrow3y^2-2y^2-y^2+12y-2y+y=-3-12\\ \Leftrightarrow11y=-15\\ \Leftrightarrow y=-\dfrac{15}{11}\\ Vậy:S=\left\{-\dfrac{15}{11}\right\}\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2+y^2-2y-6+2\sqrt{2y+3}=0\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)