Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lnb đ
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2020 lúc 14:18

Đường tròn có tâm \(I\left(-2;-2\right)\) \(\Rightarrow\overrightarrow{IM}=\left(4;3\right)\)

Để (d) tiếp xúc với (C) \(\Leftrightarrow\) (d) vuông góc IM tại M

Phương trình (d):

\(4\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y-11=0\)

Khách vãng lai đã xóa
lâm
Xem chi tiết
Vũ Quốc Huy
23 tháng 3 2019 lúc 6:35

Hỏi đáp Toán

Ngô Tiến Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 18:16

loading...  loading...  

Trang Nana
Xem chi tiết
Mushroom
14 tháng 6 2020 lúc 21:45

a) Gọi tâm của đường tròn I cần tìm là I(a;b), bán kính R nên ta có:

\(\left\{{}\begin{matrix}-2ax+-2x\\-2by=4y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

=> I(1;2)

Bán kính đường tròn là:\(R=\sqrt{1^2+2^2+20^2}=9\sqrt{5}\)

Julian Edward
Xem chi tiết
Minh Nguyệt
2 tháng 6 2020 lúc 23:50
https://i.imgur.com/TK3rGFx.jpg
Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:27

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:35

2.

(C1) có tâm \(I\left(1;1\right)\) bán kính \(R_1=\sqrt{2}\)

(C2) có tâm \(J\left(2;3\right)\) bán kính \(R_2=4\)

Gọi tiếp tuyến chung d có pt: \(ax+by+c=0\)

\(\left\{{}\begin{matrix}d\left(I;d\right)=R_1\\d\left(J;d\right)=R_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left|a+b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=4\end{matrix}\right.\)

\(\Rightarrow2\sqrt{2}\left|a+b+c\right|=\left|2a+3b+c\right|\)

? Đề nghiêm túc đấy chứ? Cho kiểu này thì sấp mặt, tối thiểu pt (C1) cũng có dạng \(x^2+y^2-2x-2y+1=0\) để học sinh còn thở chứ.

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:48

Ủa, nhìn lại thì bài 2 người ta cho đề kiểu hack não.

\(\overrightarrow{IJ}=\left(1;2\right)\Rightarrow IJ=\sqrt{5}< R_2-R_1=4-\sqrt{2}\)

Do đó \(\left(C_2\right)\) chứa \(\left(C_1\right)\) nên ko tồn tại tiếp tuyến chung của 2 đường tròn

 

Đệ Nhị Zenki
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2021 lúc 18:24

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(\dfrac{2x+2}{x-1}=-2\Rightarrow2x+2=-2x+2\Rightarrow x=0\Rightarrow y'\left(0\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-0\right)-2\)

b. Tiếp tuyến song song đường thẳng đã cho nên có hệ số góc k=-4

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\x=2\Rightarrow y=6\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4\left(x-0\right)-2\\y=-4\left(x-2\right)+6\end{matrix}\right.\)

c. Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm

Pt tiếp tuyến qua M có dạng: \(y=\dfrac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

Do tiếp tuyến qua A nên:

\(3=\dfrac{-4}{\left(x_0-1\right)^2}\left(4-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

\(\Leftrightarrow x_0^2-10x_0+21=0\Rightarrow\left[{}\begin{matrix}x_0=3\Rightarrow y'\left(3\right)=-1;y\left(3\right)=4\\x_0=7;y'\left(7\right)=-\dfrac{1}{9};y\left(7\right)=\dfrac{8}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-\dfrac{1}{9}\left(x-7\right)+\dfrac{8}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
2 tháng 4 2021 lúc 18:26

d.

Do tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1

\(\Rightarrow\left[{}\begin{matrix}\dfrac{-4}{\left(x-1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-4}{\left(x-1\right)^2}=-1\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=4\\x=-1\Rightarrow y=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-1\left(x+1\right)+0\end{matrix}\right.\)

2003
Xem chi tiết