Viết pt tiếp tuyến của đường tròn (C) có pt: x2 + y2 - 2x + 4y - 3 = 0, biết rằng tiếp tuyến đó song song với d: x + y - 3 = 0.
Viết pt tiếp tuyến của đường tròn (C) có pt: x2 + y2 - 2x + 4y - 3 = 0, biết rằng tiếp tuyến đó song song với d: x + y - 3 = 0
Cho (C): \(x^2+y^2-6x+4y-12=0\)
a) Tìm pt đg thg song song d: 3x-4y-2=0 cắt (C) tại 2 điểm A, B mà AB=8
b) Tìm m để Δ: 3x+4y+m=0 là tiếp tuyến của (C)
c) Tìm gđ của (C) và đg thg Δ': \(\left\{{}\begin{matrix}x=3+2t\\y=-2-t\end{matrix}\right.\)
cho (c) x^2+y^2+4x+4y-17=0 lập pt tiếp tuyến (d) của(c) sao cho (d) tiếp xúc với (c) tại M(2;1)
mọi ng giúp t vs
Cho (C) : x2 + y2 +4x+4y-17=0 . Viết pt tiếp tuyến (d) của (C) với hệ số góc k = -2
cho (C) x^2+y^2+4x+4y-17=0 lập pt tiếp tuyến (d) của(C) sao cho (d) qua A(2;6)
mọi ng giúp t vs ak
Cho đg tròn (C) : x^2 + y^2 -2x +6y +6=0 và đg thẳng d : 4x -3y +5=0. Viết pt đg thẳng d' song song với d và chắn trên (C) một dây cũng có độ dài bằng 2√3
Cho đg tròn (C): \(x^2+y^2-4x-y-83=0\) và đg th d: \(x+2y+20=0\). Viết pt đg thg △ song song với d và cắt (C) tạo thành một dây cung có độ dài lớn nhất
Lập pt tiếp tuyến ( d ) của đường tròn (C) biết :
A) (d) tiếp xúc (C): (x-2)2 + (y+1)2 =1 tại M0 (1,-1)
B) (d) tiếp xúc với (C): x2 + y2 -4x +2y =0 tại giao điểm của (C) với trục hoành