Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nguyễn Trường Chinh
Xem chi tiết
Moon
3 tháng 11 2018 lúc 11:25

em ms hok lớp 1

Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:34

a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)

\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)

Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)

Phương trình trở thành:

\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)

\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)

Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(

b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)

Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)

Pt trở thành:

\(a+10\left(\frac{a^2-5}{4}\right)=13\)

\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)

\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:40

c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)

\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)

Đặt \(x\sqrt{2x^2+4}=a\) ta được:

\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:52

d/ ĐKXĐ: \(x\ge1\)

Nhân cả tử và mẫu của vế phải với liên hợp của nó ta được:

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x-1}\right)^2-3=\frac{\sqrt{x+1}+\sqrt{x+1}}{2}\)

Đặt \(\sqrt{x+1}+\sqrt{x-1}=a>0\)

\(\Rightarrow a^2-3=\frac{a}{2}\Rightarrow2a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{x-1}=2\)

\(\Leftrightarrow x+\sqrt{x^2-1}=2\)

\(\Leftrightarrow\sqrt{x^2-1}=2-x\) (\(x\le2\))

\(\Leftrightarrow x^2-1=x^2-4x+4\)

\(\Rightarrow x=\frac{5}{4}\)

Khách vãng lai đã xóa
Hoàng Thu Phương
Xem chi tiết
yyyyyyyyyyyyyyyyy
4 tháng 12 2019 lúc 20:32

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}

Khách vãng lai đã xóa
Phú Nguyễn Duy
Xem chi tiết
Trần Thanh Phương
25 tháng 7 2019 lúc 21:08

Đặt \(\sqrt{\frac{3x-1}{x}}=a\)

\(pt\Leftrightarrow2a=\frac{1}{a^2}+1\)

\(\Leftrightarrow\frac{1}{a^2}-2a+1=0\)

\(\Leftrightarrow\frac{-2a^3+a^2+1}{a^2}=0\)

\(\Leftrightarrow-2a^3+a^2+1=0\)

\(\Leftrightarrow-2a^3+2a^2-a^2+a-a+1=0\)

\(\Leftrightarrow-2a^2\left(a-1\right)-a\left(a-1\right)-\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(-2a^2-a-1\right)=0\)

Dễ chứng minh \(-2a^2-a-1< 0\forall a\)

\(\Rightarrow a-1=0\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow\sqrt{\frac{3x-1}{x}}=1\)

\(\Leftrightarrow3x-1=x\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy....

Trần Thanh Phương
25 tháng 7 2019 lúc 21:12

Đặt \(\sqrt{\frac{2x}{x-1}}=a\)

\(pt\Leftrightarrow3a+\frac{4}{a}=\frac{3}{a^2}+10\)

\(\Leftrightarrow\frac{3}{a^2}-\frac{4}{a}-3a+10=0\)

\(\Leftrightarrow\frac{-3a^3+10a^2-4a+3}{a^2}=0\)

\(\Leftrightarrow-3a^3+10a^2-4a+3=0\)

Giải pt ta được \(a=3\)

\(\Leftrightarrow\sqrt{\frac{2x}{x-1}}=3\)

\(\Leftrightarrow\frac{2x}{x-1}=9\)

\(\Leftrightarrow x=\frac{9}{7}\)

Vậy...

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:15

a/ ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)

\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)

\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)

b/ ĐKXĐ: ...

\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)

Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)

\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)

\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:19

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)

Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)

\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)

\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:23

e/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x}{x-1}}=a>0\)

\(a+\frac{1}{a}=\frac{3}{\sqrt{2}}\Leftrightarrow a^2-\frac{3}{\sqrt{2}}a+1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\sqrt{2}\\a=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{\frac{x}{x-1}}=\sqrt{2}\\\sqrt{\frac{x}{x-1}}=\frac{\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x-1\right)\\2x=x-1\end{matrix}\right.\)

f/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=\frac{1-x}{\sqrt{x}}\)

Bình phương 2 vế:

\(\frac{x^2-1}{x}=\frac{\left(1-x\right)^2}{x}\Leftrightarrow x^2-1=x^2-2x+1\)

\(\Rightarrow x=1\)

Khách vãng lai đã xóa
phan đỗ hoàng linh
Xem chi tiết
Thành Vinh Lê
8 tháng 7 2018 lúc 17:13

1.

Xét riêng 2 căn lớn đầu tiên

Bình phương, thu gọn được căn(12-8 căn 2)

Giờ kết hợp kết quả này với căn lớn còn lại

Tiếp tục bình phương, thu gọn là xong

Vũ Thị NGọc ANh
Xem chi tiết
Nguyễn Quốc Gia Huy
17 tháng 9 2017 lúc 8:28

b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)

phan tuấn anh
Xem chi tiết
Nguyễn Tuấn
11 tháng 6 2016 lúc 21:11

\(\frac{1}{pt}\)=\(\sqrt{x}+\sqrt{2x+3}=\frac{1}{\sqrt{3}}\left(\sqrt{4x-3}+\sqrt{5x-6}\right)\)   

=>\(\frac{x-2x-3}{\sqrt{x}-\sqrt{2x-3}}=\frac{1}{\sqrt{3}}\left(\frac{4x-3-5x-6}{\sqrt{4x-3}-\sqrt{5x+6}}\right)\)

=>\(\frac{3-x}{\sqrt{x}-\sqrt{2x-3}}=\frac{1}{\sqrt{3}}\left(\frac{3-x}{\sqrt{4x-3}-\sqrt{5x+6}}\right)\)

=>\(\sqrt{x}-\sqrt{2x-3}=\sqrt{3}\left(\sqrt{4x-3}-\sqrt{5x+6}\right)\)

=>\(\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=\sqrt{3}\left(\frac{3-x}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\)

=>\(\left(3-x\right)\left(\frac{1}{\sqrt{x}+\sqrt{2x-3}}-\left(\frac{\sqrt{3}}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\right)\)=0

=>3-x=0=>x=3

hoặc\(\frac{1}{\sqrt{x}+\sqrt{2x-3}}-\left(\frac{\sqrt{3}}{\sqrt{4x-3}+\sqrt{5x-6}}\right)\)=0

Võ Đông Anh Tuấn
11 tháng 6 2016 lúc 20:39

Em mới học lớp 7 

Le Vinh Khanh
11 tháng 6 2016 lúc 20:48

x=3 nha