Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

giải pt

a) \(2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{5x-2}{x}\)

b) \(3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{5x-3}{2x}+9\)

c) \(\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{12-9x}{x}+6\)

d) \(\frac{x-1}{x}-2\sqrt{\frac{x-1}{x}}=3\)

e) \(\sqrt{\frac{x}{x-1}}+\sqrt{\frac{x-1}{x}}=\frac{3}{\sqrt{2}}\)

f) \(\sqrt{x-\frac{1}{x}}=\frac{1}{\sqrt{x}}-\sqrt{x}\)

Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:15

a/ ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)

\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)

\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)

b/ ĐKXĐ: ...

\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)

Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)

\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)

\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:19

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)

Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)

\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)

\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:23

e/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x}{x-1}}=a>0\)

\(a+\frac{1}{a}=\frac{3}{\sqrt{2}}\Leftrightarrow a^2-\frac{3}{\sqrt{2}}a+1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\sqrt{2}\\a=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{\frac{x}{x-1}}=\sqrt{2}\\\sqrt{\frac{x}{x-1}}=\frac{\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x-1\right)\\2x=x-1\end{matrix}\right.\)

f/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=\frac{1-x}{\sqrt{x}}\)

Bình phương 2 vế:

\(\frac{x^2-1}{x}=\frac{\left(1-x\right)^2}{x}\Leftrightarrow x^2-1=x^2-2x+1\)

\(\Rightarrow x=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
tran duc huy
Xem chi tiết
Tran Tuan
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết