Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Scarlett
Xem chi tiết
Gia Huy
20 tháng 6 2023 lúc 16:17

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 11 2021 lúc 18:09

TH1: \(m=3\Rightarrow f\left(x\right)=-5< 0\) với mọi x(ktm)

TH2: \(m>3\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow\min\limits_{\left[3;4\right]}f\left(x\right)=f\left(3\right)=3\left(m-3\right)-2m+1=m-8\)

\(m-8>0\Rightarrow m>8\)

TH3: \(m< 3\Rightarrow f\left(x\right)\) nghịch biến trên R

\(\Rightarrow\min\limits_{\left[3;4\right]}=f\left(4\right)=4\left(m-3\right)-2m+1=2m-11\)

\(2m-11>0\Rightarrow m>\dfrac{11}{2}\) (ktm điều kiện \(m< 3\))

Kết hợp lại ta được \(m>8\)

Ngọc Mai
Xem chi tiết
Trên con đường thành côn...
18 tháng 7 2021 lúc 20:01

undefined

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 20:02

\(\Delta=\left(2m-1\right)^2-4\cdot\left(m+1\right)\cdot m\)

\(=4m^2-4m+4-4m^2-4m\)

\(=-8m+4\)

Để phương trình có hai nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}m+1\ne0\\-8m+4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\-8m>-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 21:03

Ta có: \(\text{Δ}=\left(1-4m\right)^2-4\left(3-2m\right)\left(1-2m\right)\)

\(=16m^2-8m+4-4\left(2m-3\right)\left(2m-1\right)\)

\(=16m^2-8m+4-4\left(4m^2-2m-6m+3\right)\)

\(=16m^2-8m+4-4\left(4m^2-8m+3\right)\)

\(=16m^2-8m+4-16m^2+32m-12\)

\(=24m-8\)

Để phương trình có hai nghiệm phân biệt thì

\(\left\{{}\begin{matrix}3-2m\ne0\\24m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m\ne3\\24m>8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{3}{2}\\m>\dfrac{1}{3}\end{matrix}\right.\)

Kinder
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Phùng Thị Huyền Trang
29 tháng 4 2022 lúc 22:44

loading...  

Nguyễn Duy Tâm
29 tháng 4 2022 lúc 22:52

loading...

Phạm Bình Nghĩa
30 tháng 4 2022 lúc 8:43

loading...

Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 17:03

\(\Leftrightarrow\sqrt{-x^2-2x+15}-x^2-2x+15\le a+15\)

Đặt \(\sqrt{-x^2-2x+15}=t\ge0\)

Đồng thời ta có: \(\sqrt{-x^2-2x+15}=\sqrt{\left(x+5\right)\left(3-x\right)}\le\dfrac{1}{2}\left(x+5+3-x\right)=4\)

\(\Rightarrow0\le t\le4\)

BPT trở thành: \(t^2+t\le a+15\Leftrightarrow t^2+t-15\le a\) ; \(\forall t\in\left[0;4\right]\)

\(\Leftrightarrow a\ge\max\limits_{t\in\left[0;4\right]}\left(t^2+t-15\right)\)

Xét hàm \(f\left(t\right)=t^2+t-15\) trên \(\left[0;4\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)

\(\Rightarrow f\left(t\right)_{max}=4\Rightarrow a\ge4\)

Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Nguyễn Thanh Hiền
19 tháng 6 2021 lúc 16:21

Nguyễn Thanh Hiền
19 tháng 6 2021 lúc 16:25

undefined

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 23:52

\(y'=x^2-2x+m\)

\(y'\ge0\) ; \(\forall x\in\left(1;3\right)\Leftrightarrow x^2-2x+m\ge0\) ;\(\forall x\in\left(1;3\right)\)

\(\Leftrightarrow m\ge\max\limits_{\left(1;3\right)}\left(-x^2+2x\right)\)

Xét hàm \(f\left(x\right)=-x^2+2x\) trên \(\left(1;3\right)\)

\(-\dfrac{b}{2a}=1\) ; \(f\left(1\right)=1\) ; \(f\left(3\right)=-3\)

\(\Rightarrow m\ge1\)