giải pt
\(2\sqrt{x^2+x+1}+\sqrt{x+1}=4x+3\)
giải pt: \(x^2+4x+3=\left(x-3\right)\sqrt{x^2+1}\)
hình như câu này hôm qua Thắng giải r
Angela ở đâu vậy, cho mk xin địa chỉ đi
\(\left(x^2+1\right)+4\left(x-3\right)+14=\left(x-3\right)\sqrt{x^2+1}\)
\(a^2+4b+14=ba\)
Giải pt:
\(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\) \(x^2+3x+4=\left(x+3\right)\sqrt{x^2+x+2}\)
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) \(15x^2+2\left(x+1\right)\sqrt{x+2}=2-5x\)
Viết đề mà ko ai đọc được vậy :v
a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)
\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)
\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy...
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)
<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)
Xét \(\sqrt{x^2+1}+3-x=0\)
<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))
Xét \(\sqrt{x^2+1}+3-x\ne0\)
pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)
<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)
<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)
<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)
pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)
<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))
=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)
<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)
<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))
=>(2) vô nghiệm
Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)
P/s: Hơi dài :)
Mấy anh chị khác god phân tích lắm nên em đành làm cách khác:(
\(2x^2+2x+1=\left(4x-1\right)\sqrt{x^2+1}\)
Đặt \(\sqrt{x^2+1}=a\ge1\)
\(PT\Leftrightarrow-2a^2+\left(4x-1\right)a-2x+1=0\)
\(\Leftrightarrow\left(2a-1\right)\left(2x-a-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}a=\frac{1}{2}\left(L\right)\\2x=a+1\left(1\right)\end{matrix}\right.\)
Xét (1): Do \(a\ge1\rightarrow a+1\ge2\Rightarrow x\ge1\)
(1) \(\Leftrightarrow2x=\sqrt{x^2+1}+1\)
\(\Leftrightarrow\frac{5}{4}x-\sqrt{x^2+1}+\frac{3}{4}\left(x-\frac{4}{3}\right)=0\)
\(\Leftrightarrow\left(x-\frac{4}{3}\right)\left[\frac{\frac{3}{16}\left(3x+4\right)}{\frac{5}{4}x+\sqrt{x^2+1}}+\frac{3}{4}\right]=0\)
\(\Leftrightarrow x=\frac{4}{3}\) (vì cái ngoặc to luôn > 0 với mọi \(x\ge1\))
Vậy...
Giải pt: a) 3x\(^2\)+ 4x + 10 = 2\(\sqrt{14x^2-7}\).
b) \(\sqrt{4x^2+5x+1}\) + 3 = 2\(\sqrt{x^2-x+1}\) + 9x.
Giúp mk nk ^^
Lời giải:
a) \(3x^2+4x+10=2\sqrt{14x^2-7}=2\sqrt{7(2x^2-1)}\)
Áp dụng BĐT AM-GM:
\(3x^2+4x+10\leq 7+(2x^2-1)\)
\(\Leftrightarrow x^2+4x+4\leq 0\)
\(\Leftrightarrow (x+2)^2\leq 0\)
Mà \((x+2)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+2)^2=0\)
\(\Leftrightarrow x=-2\) (thử lại thấy thỏa mãn)
b) Có:
\(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)
\(\Leftrightarrow \sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)
\(\Leftrightarrow \frac{9x-3}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-(9x-3)=0\)
\(\Leftrightarrow (9x-3)\left(\frac{1}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-3=0\Leftrightarrow x=\dfrac{1}{3}\\\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\left(2\right)\end{matrix}\right.\)
Xét (2):
Ta thấy:
\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\geq \sqrt{4x^2-4x+4}=\sqrt{(2x-1)^2+3}\geq \sqrt{3}>1\)
Do đó \((2)\) vô lý
Vậy PT có nghiệm \(x=\frac{1}{3}\)
Giải phương trình sau:
a, \(\sqrt{x^2-x+3}+7=10\)
b, \(\sqrt{x^2-4x+8}-7=-5\)
c, \(\sqrt{x-2}=x+1\)
d, \(\sqrt{1+x^2}-3=x\)
a: Ta có: \(\sqrt{x^2-x+3}+7=10\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)
\(\Leftrightarrow x^2-4x+8=4\)
\(\Leftrightarrow x-2=0\)
hay x=2
giải pt :
a, \(x^2-4x-2=2\sqrt{x^3+1}\)
b, \(x^2-7x+1=4\sqrt{x^4+x^2+1}\)
c, \(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25+2}\)
Giải pt:
\(2x+\sqrt{8-x^2}+\sqrt{4x-x^2}=4+2\sqrt{2x}.\)
Giải Pt: \(\left(4x+1\right)\sqrt{x^2+1}=2x^2-2x+2\)
giải pt :
a,\(2x^2-11x+21=3\sqrt[3]{4x-4}\)
b,\(\dfrac{\sqrt{x-3}}{\sqrt{2x-1}-1}=\dfrac{1}{\sqrt{x+3}-\sqrt{x-3}}\)
c,\(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
giải pt sau
1, \(\sqrt{5-2x}=6\)
2,\(\sqrt{2-x}-\sqrt{x+1}=0\)
3, \(\sqrt{4x^2+4x+1}=6\)
4,\(\sqrt{x^2-10x+25}=x-2\)
1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)
\(\Leftrightarrow5-2x=36\)
\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)
2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)
\(\Leftrightarrow2-x=x+1\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)
\(\Leftrightarrow\left|x-5\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)