Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị thảo vân
Xem chi tiết
Nguyễn Quang Trung
11 tháng 1 2016 lúc 22:26

hình như câu này hôm qua Thắng giải r

nguyễn thị thảo vân
11 tháng 1 2016 lúc 22:28

Angela ở đâu vậy, cho mk xin địa chỉ đi 

Nguyễn Nhật Minh
11 tháng 1 2016 lúc 22:31

\(\left(x^2+1\right)+4\left(x-3\right)+14=\left(x-3\right)\sqrt{x^2+1}\)

\(a^2+4b+14=ba\)

 

Nguyen
Xem chi tiết
Trần Thanh Phương
4 tháng 2 2020 lúc 10:46

Viết đề mà ko ai đọc được vậy :v

a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)

\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)

\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)

\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy...

Khách vãng lai đã xóa
Lê Thị Thục Hiền
4 tháng 2 2020 lúc 11:51

\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)

<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)

Xét \(\sqrt{x^2+1}+3-x=0\)

<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))

Xét \(\sqrt{x^2+1}+3-x\ne0\)

pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)

<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)

<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)

<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)

pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)

<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))

=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)

<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)

<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))

=>(2) vô nghiệm

Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)

P/s: Hơi dài :)

Khách vãng lai đã xóa
tthnew
4 tháng 2 2020 lúc 13:04

Mấy anh chị khác god phân tích lắm nên em đành làm cách khác:(

\(2x^2+2x+1=\left(4x-1\right)\sqrt{x^2+1}\)

Đặt \(\sqrt{x^2+1}=a\ge1\)

\(PT\Leftrightarrow-2a^2+\left(4x-1\right)a-2x+1=0\)

\(\Leftrightarrow\left(2a-1\right)\left(2x-a-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}a=\frac{1}{2}\left(L\right)\\2x=a+1\left(1\right)\end{matrix}\right.\)

Xét (1): Do \(a\ge1\rightarrow a+1\ge2\Rightarrow x\ge1\)

(1) \(\Leftrightarrow2x=\sqrt{x^2+1}+1\)

\(\Leftrightarrow\frac{5}{4}x-\sqrt{x^2+1}+\frac{3}{4}\left(x-\frac{4}{3}\right)=0\)

\(\Leftrightarrow\left(x-\frac{4}{3}\right)\left[\frac{\frac{3}{16}\left(3x+4\right)}{\frac{5}{4}x+\sqrt{x^2+1}}+\frac{3}{4}\right]=0\)

\(\Leftrightarrow x=\frac{4}{3}\) (vì cái ngoặc to luôn > 0 với mọi \(x\ge1\))

Vậy...

Khách vãng lai đã xóa
Cao Thị Thùy Linh
Xem chi tiết
Akai Haruma
17 tháng 9 2017 lúc 22:09

Lời giải:

a) \(3x^2+4x+10=2\sqrt{14x^2-7}=2\sqrt{7(2x^2-1)}\)

Áp dụng BĐT AM-GM:

\(3x^2+4x+10\leq 7+(2x^2-1)\)

\(\Leftrightarrow x^2+4x+4\leq 0\)

\(\Leftrightarrow (x+2)^2\leq 0\)

Mà \((x+2)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+2)^2=0\)

\(\Leftrightarrow x=-2\) (thử lại thấy thỏa mãn)

b) Có:

\(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)

\(\Leftrightarrow \sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)

\(\Leftrightarrow \frac{9x-3}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-(9x-3)=0\)

\(\Leftrightarrow (9x-3)\left(\frac{1}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-3=0\Leftrightarrow x=\dfrac{1}{3}\\\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\left(2\right)\end{matrix}\right.\)

Xét (2):

Ta thấy:

\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\geq \sqrt{4x^2-4x+4}=\sqrt{(2x-1)^2+3}\geq \sqrt{3}>1\)

Do đó \((2)\) vô lý

Vậy PT có nghiệm \(x=\frac{1}{3}\)

Nguyễn Thị Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 22:41

a: Ta có: \(\sqrt{x^2-x+3}+7=10\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)

\(\Leftrightarrow x^2-4x+8=4\)

\(\Leftrightarrow x-2=0\)

hay x=2

Mai Thị Thúy
Xem chi tiết
vu tien dat
Xem chi tiết
Họ Và Tên
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết
Lấp La Lấp Lánh
19 tháng 9 2021 lúc 12:20

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)