Chứng minh không tồn tại x thỏa mãn phương trình:
x + \(\sqrt{x}\) + 2 = \(\sqrt{x-1}+\sqrt{3-x}\)
Bài 1:a) Chứng minh rằng không tồn tại các cặp số x,y thỏa mãn:
8x2+26xy+29y2=10001
b) Giải phương trình nghiệm nguyên 2xy-2y+x^2-4x+2=0
c) Giải phương trình 4+2\(\sqrt{2-2x^2}\)=3\(\sqrt{x}+3\sqrt{2-x}\)
Chứng minh rằng tồn tại một cặp số duy nhất (x, y) thỏa mãn phương trình:
\(x^2-4x+y-6\sqrt{y}+13=0\)
Đề bài sai
Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là:
\(x^2-4x+y-6\sqrt{y}+13=0\)
ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)
Vậy có duy nhất cặp số (x;y)=(2;9) thỏa mãn phương trình
ĐK: \(y\ge0\)
\(x^2-4x+y-6\sqrt{y}+13=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(2;9\right)\) là nghiệm duy nhất của phương trình
Chứng minh rằng tồn tại duy nhất một cặp số (x,y) thỏa mãn phương trình \(x^2-4x+y-6\sqrt{y}+13=0\)
Giải hộ mình mấy bài này với:
1)cho số thực dương a,b,c thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
2)Cho 3 số x,y,z khác không thỏa mãn:\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2010\end{cases}}\)
Chứng minh rằng trong 3 số x,y,z luôn tồn tại 2 số đối nhau.
Có bao nhiêu giá trị nguyên dương của y để tồn tại số thực x >1 thỏa mãn phương trình: (x2y - 8x + y - 3).log9y = log3\(\dfrac{\sqrt{8x-y+4}}{x}\)
\(\left(x^2y-8x+y-4\right)log_3y=2log_3\dfrac{\sqrt{8x-y+4}}{x}-log_3y=log_3\dfrac{8x-y+4}{x^2y}\)
\(\Rightarrow log_3\left(x^2y\right)+x^2y.log_3y=log_3\left(8x-y+4\right)+\left(8x-y+4\right)log_3y\)
Xét hàm \(f\left(t\right)=log_3t+t.log_3y\Rightarrow f'\left(t\right)=\dfrac{1}{1.ln3}+log_3y>0\)
\(\Rightarrow x^2y=8x-y+4\)
\(\Rightarrow y=\dfrac{8x+4}{x^2+1}\)
Tìm y để pt trên có nghiệm lớn hơn 1, lập BBT \(\Rightarrow y< 6\)
Chứng minh: Không tồn tại giá trị x để \(P=\dfrac{3\sqrt{x}+5}{\sqrt{x}+2}\) là số nguyên
\(P=\dfrac{3\sqrt{x}+6-1}{\sqrt{x}+2}=3-\dfrac{1}{\sqrt{x}+2}< 3\)
\(P=\dfrac{6\sqrt{x}+10}{2\left(\sqrt{x}+2\right)}=\dfrac{5\left(\sqrt{x}+2\right)+\sqrt{x}}{2\left(\sqrt{x}+2\right)}=\dfrac{5}{2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\ge\dfrac{5}{2}\)
\(\Rightarrow\dfrac{5}{2}\le P< 3\) ; \(\forall x\in\) TXĐ nên không tồn tại x để P nguyên (giữa 5/2 và 3 không có số nguyên nào)
Bài 1:Giải các phương trình sau:
a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)
b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)
d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)
e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)
Bài 2:Cho a,b,c thỏa mãn a+b+c=1
Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Bài 3:Giải hệ phương trình:
\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)
Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:
\(x^2+2y^2+2xy-5x-5y=-6\)
Để (x+y) nguyên
Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện
\(x+y+z+xy+yz+xz=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:
\(a\ne0\)\(4a+2b+c+d=0\)
Chứng minh \(b^2\ge4ac+4ad\)
Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
Có bạn nào biết giải câu f ko giải hộ mình với
Biết \(\sqrt{3x-x^2}\) +\(\sqrt{x^2-6x=13}\) =\(\sqrt{\left(x-1\right)\left(5-x\right)}\)(1) là phương trình hệ quả của phương trình \(\sqrt{m-x}\) =\(\sqrt{x+1}\) +\(\sqrt{4-x}\). Tìm m.
A.m=1 B.m=12 C.m=9 D.Không tồn tại m.
Bài 1: Tìm các số thực x để biểu thức \(\sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}\) là số nguyên.
Bài 2: Chứng minh rằng với mọi số tự nhiên n dương, phương trình sau không có nghiệm hữu tỷ:
\(x^2+2\left(n-1\right)\left(n+1\right)x+1-6n^3-13n^2-6n=0\)
Bài 3: Tìm các số hữu tỷ a và b thỏa mãn \(\sqrt{a\sqrt{7}}-\sqrt{b\sqrt{7}}=\sqrt{11\sqrt{7}-28}\)