\(2x^2+\sqrt{x^2-5x-6}=10x+15\)
a.\(\dfrac{5x^3-2x^2+2,5x-2,6}{x^2+3x-2,7}\) tại \(x=\sqrt{0,7}\)
b.\(\dfrac{2x^4-5x^3+2x^2-5x-30}{x^2+10x-15}\) tại \(x=-\sqrt{5}\)
Giải bpt
\(2x^2+\sqrt{x^2-5x-6}>10x+15\)
\(2x^2+\sqrt{x^2-5x-6}>10x+15\) (1)
ĐK: \(\left[{}\begin{matrix}x\le-1\\x\ge6\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x+6}-3>0\)
Đặt \(\sqrt{x^2-5x-6}=a\left(a\ge0\right)\)
Ta có: \(2a^2+a-3>0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x< -\frac{3}{2}\\x>1\end{matrix}\right.\)
Kết hợp điều kiện
Vậy \(\left[{}\begin{matrix}x< -\frac{3}{2}\\x\ge6\end{matrix}\right.\)
Giải bất phương trình: \(2x^2+\sqrt{x^2-5x-6}>10x+15\)
j kìa
x\(\in\left\{-\infty;2\frac{1}{2}-\frac{\sqrt{53}}{2}\right\}U\left\{\frac{\sqrt{53}}{2}+2\frac{1}{2};\infty\right\}\)
có bạn nào biết thì giải giúp nha , hic hic còn khảng 6 bài nữa ..........giúp nha mọi người
=.= k biết làm thì nói toạt ra cho rồi
Rút Gọn Biểu Thức
1, \(\dfrac{a-6\sqrt{a}+9}{5\sqrt{a}-15}\) với a≥0, a≠9
2.\(5x-\sqrt{x^2-10x+25}\) với x nhỏ hơn 5
3,\(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) với x≠1
4, 3√5 \(\sqrt{46-6v5}\)
1) Ta có: \(\dfrac{a-6\sqrt{a}+9}{5\sqrt{a}-15}\)
\(=\dfrac{\left(\sqrt{a}-3\right)^2}{5\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\sqrt{a}-3}{5}\)
2) Ta có: \(5x-\sqrt{x^2-10x+25}\)
\(=5x-\left|x-5\right|\)
\(=5x-5+x\)
=6x-5
3) Ta có: \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
\(=\dfrac{\left|x-1\right|}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\pm1}{x+1}\)
4) Ta có: \(3\sqrt{5}-\sqrt{46-6\sqrt{5}}\)
\(=3\sqrt{5}-3\sqrt{5}+1\)
=1
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(\sqrt{x^2+x+1}=x+1\)
\(\sqrt{4x^2-20x+25}+2x=5\)
\(\sqrt{x^2-2x+1}=4\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)
voi dk \(x\ge-1\) ta co
\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)
b,\(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|+2x=5\)
th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)
th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)
\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)
kl \(x\le\frac{5}{2}\)
c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)
d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)
ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
dau = xay ra \(\Leftrightarrow x=-1\)
giải các bpt sau
a. \(\sqrt{-x^2+6x-5}>8-2x\)
b. \(\sqrt{\left(x+5\right)\left(3x+4\right)}< 4\left(x-1\right)\)
c. \(2x^2+\sqrt{x^2-5x-6}>10x+15\)
bình phương lên để mất căn rồi lập bảng xét dấu nha bạn
giải các phương trình sau:
a \(\sqrt{3x^2-17x+4}=3x-2\)
b \(2x^2-10x-3\sqrt{x^2-5x+4}+6=0\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)
\(\Rightarrow2x^2-10x=2t^2-8\)
Phương trình trở thành:
\(2t^2-8-3t+6=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x+4}=2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5x(4x^2-2x+1) -(2x(10x^2-5x-2) với x=3
x(x-y)+(x+y) với x=6 vào y=8
2x(3x^2-5x+8)-3x^2(2x-5) -16x với x=-15
câu 1/ 5x(\(4x^2\)-2x+1) - 2x(\(10x^2\)-5x-2)
= 5x.\(4x^2\)-5x.2x+ 5x.1 - ( 2x.\(10x^2\)-2x.5x-2x.2)
= 9\(x^3\)-10\(x^2\)+5x - 20\(x^3\)+10\(x^2\)+4x
= (9\(x^3\)-\(20x^3\)) + (-10\(x^2\)+10\(x^2\)) + (5x+4x)
= \(-11x^3\) + 9x
à cj ơi, e 2k6, đọc phần lí thuyết r lm, nên có lỗi sai j mong cj thông cảm
5x.( 4x2-2x+1)- 2x( 10x2-5x-2)
= 20x3- 10x2+5x - 20x3+ 10x2+ 4xx
= (5x+4x)= 9x
Thay x=3 vào 9x, ta có:
9×3=27
Vậy biểu thức trên bằng 27
Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)