\(2x^2+\sqrt{x^2-5x-6}>10x+15\) (1)
ĐK: \(\left[{}\begin{matrix}x\le-1\\x\ge6\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x+6}-3>0\)
Đặt \(\sqrt{x^2-5x-6}=a\left(a\ge0\right)\)
Ta có: \(2a^2+a-3>0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x< -\frac{3}{2}\\x>1\end{matrix}\right.\)
Kết hợp điều kiện
Vậy \(\left[{}\begin{matrix}x< -\frac{3}{2}\\x\ge6\end{matrix}\right.\)