Tìm x biết:
a) (3 - x).(x - 3) = 0
b) x.(x + 1) = 0
Tìm x,biết:
a)2x.(x+4)-(x-1).(2x+3)=0
b)x2-2x-3=0
a) \(2x\left(x+4\right)-\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+8x-2x^2-x+3=0\)
\(\Leftrightarrow7x=-3\Leftrightarrow x=-\dfrac{3}{7}\)
b) \(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(a,\Leftrightarrow2x^2+8x-2x^2-x+3=0\\ \Leftrightarrow7x=-3\\ \Leftrightarrow x=-\dfrac{3}{7}\\ b,x^2-2x-3=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
a: Ta có: \(2x\left(x+4\right)-\left(x-1\right)\cdot\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+8x-2x^2-3x+2x+3=0\)
\(\Leftrightarrow7x=-3\)
hay \(x=-\dfrac{3}{7}\)
b: ta có: \(x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
tìm x biết:
a.(x+3)^2-(x+3)(x-3)=0
b.5x(x^2+4)=0
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow x=0\left(x^2+4>0\right)\)
\(a,x^2+2.x.3+3^2-\left(x^2-3^2\right)=0\)
\(x^2+6x+9-x^2+9=0\)
\(6x+18=0\)
\(6x=-18\)
\(x=-3\)
Vậy x=-3
\(b,5x^3+20x=0\)
\(5x\left(x^2+4\right)=0\)
\(Th1:5x=0=>x=0\)
\(Th2:x^2+4=0\)
\(x^2=-4\)(vô lý)
Vậy x=0
Tìm x biết:
a) x.(x+5)-(x-2).(x+3)=0
b) 2x3-18x=0
\(a,x\left(x+5\right)-\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow x^2+5x-x^2-x+6=0\Leftrightarrow4x=-6\\ \Leftrightarrow x=-\dfrac{3}{2}\)
\(b,2x^3-18x=0\\ \Leftrightarrow2x\left(x^2-9\right)=0\\ \Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
a: Ta có: \(x\left(x+5\right)-\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2+5x-x^2-3x+2x+6=0\)
\(\Leftrightarrow7x=-6\)
hay \(x=-\dfrac{6}{7}\)
b: Ta có: \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Tìm x,y biết:
a) (x-5) + |4-2y| = 0
b)|x-3| + |x-1/2|=0
Giúp mình với nha.
\(\left|x-3\right|+\left|x-\dfrac{1}{2}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)( vô lý)
Vậy \(S=\varnothing\)
b: \(\left|x-3\right|+\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Tìm số nguyên x, biết:
a) (x + 12) . (x – 6) > 0
b) (10 - x) . (3 - x) < 0
\(a,\left(x+12\right)\left(x-6\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-12\\x>6\end{matrix}\right.\\\left\{{}\begin{matrix}x< -12\\x< 6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\)
\(b,\left(10-x\right)\left(3-x\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10-x< 0\\3-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-x>0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>10\\x< 3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\\ \Rightarrow x\in\left\{...;-15;-14;-13;7;8;9;...\right\}\\ b,\Rightarrow\left(x-10\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10>0\\x-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10< 0\\x-3>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>10;x< 3\left(\text{loại}\right)\\3< x< 10\end{matrix}\right.\\ \Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
\(a,\left(x+12\right)\left(x+6\right)>0\) \(khi\) \(x>6\Rightarrow x\in\left\{7,8,9,...\right\}\)
\(b,\left(10-x\right)\left(3-x\right)< 0\) \(khi\) \(x< 10\Rightarrow x\in\left\{9,8,7,...\right\}\)
tìm x biết:
a)2(x+3)+x(3+x)=0
b)(2x-3)^2-(4x-6)(x+2)+x^2+4x+4=0
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
\(2\left(x+3\right)+x\left(3+x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
<=> (x+3)(x+2)=0
TH1 x+3=0 <=> x=-3
TH2 x+2=0 <=> x=-2
Vậy....
Tìm x∈Z, biết:
a)x.(x-6)=0
b)(-7-x).(-x+5)=0
c)(x+3).(x-7)=0
d)(x-3).(x2+12)=0
e)(x+1).(2-x) ≥0
f)(x-3).(x-5) ≤0
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
tìm x biết:
a) 4x2-(x-3)2=0
b)x2-4+(x+2)2=0
a ,\(4x^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-x+3\right)\left(2x+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\3x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy
b,\(x^2-4+\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ...
1.rút gọn bt A= (x+2)3-2x(x+3)+(x3-8):(x-2)
2. tìm x biết:
a. 3x2-12x=0
b.4x2-1-4(1-2x)=0
Tìm tập hợp giá trị của x biết:
a,(x-1)(x-2)>0
b,2x-3<0
c,(2x-4)(9-3x)>0
d,2x/3-3/4<0