a) Tìm điều kiện của x để giátrịcủa S xác định.
b) Rút gọn P. c)Tính giá trị của S với | x – 5| = 2
P= ( 2+x/2-x) + 4x^2/x^2-4 - 2-x/2+x ) : x^2 -3x/2x^2 - x^3
a) Tìm điều kiện của x để giátrịcủa S xác định.
b) Rút gọn P. c)Tính giá trị của S với | x – 5| = 2
Cho P = \(\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right)\div\dfrac{x^2-3x}{2x^2-x^3}\)
a) Tìm điều kiện của x để giá trị của P xác định.
b) Rút gọn P.
c) Tính giá trị của P với I x - 5 I = 2
a: ĐKXĐ: \(x\notin\left\{2;-2;0;3\right\}\)
b: \(P=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x-3}{x\left(2-x\right)}\)
\(=\dfrac{4x^2-8x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{4x}{x+2}\cdot\dfrac{-x\left(x-2\right)}{x-3}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)
Cho biểu thức
a) Tìm điều kiện của x để biểu thức A xác định.
b) Rút gọn A
c) Tính giá trị của A khi x= -1
ĐK: \(x\ne\pm2\)
\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right).\dfrac{x+2}{2}\)
\(=\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right].\dfrac{x+2}{2}\)
\(=\dfrac{x-2x-2+x-2}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{2}\)
\(=\dfrac{2}{2-x}\)
a) Tìm điều kiện của x để giátrịcủa S xác định.
b) Rút gọn P. c)Tính giá trị của S với | x – 5| = 2
1. Cho phân thức 2x^2 - 4x 8/x^3 8a) Với điều kiện nào của x thì giá trị của phân thức được xác định.b) Hãy rút gọn phân thức c) Tính giá trị của phân thức tại x=2d) Tìm giá trị của x để giá trị của phân thức bằng 2
a) ĐKXĐ: \(x\ne-2\)
b) Ta có: \(\dfrac{2x^2-4x+8}{x^3+8}\)
\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(=\dfrac{2}{x+2}\)
c) Vì x=2 thỏa mãn ĐKXĐ
nên Thay x=2 vào biểu thức \(\dfrac{2}{x+2}\), ta được:
\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi x=2 thì giá trị của biểu thức là \(\dfrac{1}{2}\)
d) Để \(\dfrac{2}{x+2}=2\) thì x+2=1
hay x=-1(nhận)
Vậy: Để \(\dfrac{2}{x+2}=2\) thì x=-1
Cho phân thức \(\dfrac{3x+3}{x^2-1}\)
a, Tìm điều kiện của x để giá trị phân thức được xác định.
b, Rút gọn phân thức trên.
c, Tìm x để phân thức có giá trị bằng -2
a. \(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b. \(A=\dfrac{3x+3}{x^2-1}\\ A=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ A=\dfrac{3}{x-1}\)
c. Để \(A=-2\) thì \(\dfrac{3}{x-1}=-2=\dfrac{3}{\dfrac{-3}{2}}\\ \Leftrightarrow x-1=\dfrac{-3}{2}\\ \Leftrightarrow x=\dfrac{-1}{2}\left(\text{t/m ĐKXĐ}\right)\)
Vậy \(x=\dfrac{-1}{2}\) để phân thức nhận giá trị là -2.
a) Có: \(x^2-1=\left(x-1\right)\left(x+1\right)\)
ĐKXĐ là x ≠ 1; x ≠ -1
b) \(\dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}\)
c) Theo đề ta có: \(\dfrac{3}{x-1}=2\)
\(\Rightarrow x-1=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{5}{2}\) (T/m ĐK)
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{3x+3}{x^2-1}\)
\(=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{3}{x-1}\)
c) Để phân thức có giá trị bằng -2 thì \(\dfrac{3}{x-1}=-2\)
\(\Leftrightarrow x-1=\dfrac{-3}{2}\)
hay \(x=\dfrac{-1}{2}\)(nhận)
Vậy: Để phân thức có giá trị bằng -2 thì \(x=\dfrac{-1}{2}\)
Cho biểu thức \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right).\dfrac{5x-5}{2x}\)
a) Tìm điều kiện của x để giá trị biểu thức A được xác định.
b) Rút gọn A.
c) Tính giá trị của biểu thức A khi x = 1 và x = 2019.
d) Tìm x nguyên để giá trị của A là một số nguyên.
Cho phân thức: x2-9/x+3
a) Tìm điều kiện của x để giá trị của phân thức xác định.
b)Rút gọn phân thức.
a: ĐKXĐ: x<>-3
b: \(=\dfrac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3\)
a) ĐKXĐ: \(x\ne-3\)
b) \(\dfrac{x^2-9}{x+3}=\dfrac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3\)
Cho biểu thức: P= 3/x+2 - 2/2-x -8/x^2-4
a) Tìm điều kiện của biến x để giá trị của biểu thức P được xác định.
b) Rút gọn biểu thức P.
c) Tìm giá trị nguyên dương của x để giá trị của biểu thức P là một số nguyên dương.
a) ĐK:\(\begin{cases} x + 2≠0\\ x - 2≠0 \end{cases}\)⇔\(\begin{cases} x ≠ -2\\ x≠ 2 \end{cases}\)
Vậy biểu thức P xác định khi x≠ -2 và x≠ 2
b) P= \(\dfrac{3}{x+2}\)-\(\dfrac{2}{2-x}\)-\(\dfrac{8}{x^2-4}\)
P=\(\dfrac{3}{x+2}\)+\(\dfrac{2}{x-2}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3(x-2)}{(x-2)(x+2)}\)+\(\dfrac{2(x+2)}{(x-2)(x+2)}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3x-6+2x+4-8}{(x-2)(x+2)}\)
P=\(\dfrac{5x-10}{(x-2)(x+2)}\)
P=\(\dfrac{5(x-2)}{(x-2)(x+2)}\)
P=\(\dfrac{5}{x+2}\)
Vậy P=\(\dfrac{5}{x+2}\)
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)