a) ĐK:\(\begin{cases} x + 2≠0\\ x - 2≠0 \end{cases}\)⇔\(\begin{cases} x ≠ -2\\ x≠ 2 \end{cases}\)
Vậy biểu thức P xác định khi x≠ -2 và x≠ 2
b) P= \(\dfrac{3}{x+2}\)-\(\dfrac{2}{2-x}\)-\(\dfrac{8}{x^2-4}\)
P=\(\dfrac{3}{x+2}\)+\(\dfrac{2}{x-2}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3(x-2)}{(x-2)(x+2)}\)+\(\dfrac{2(x+2)}{(x-2)(x+2)}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3x-6+2x+4-8}{(x-2)(x+2)}\)
P=\(\dfrac{5x-10}{(x-2)(x+2)}\)
P=\(\dfrac{5(x-2)}{(x-2)(x+2)}\)
P=\(\dfrac{5}{x+2}\)
Vậy P=\(\dfrac{5}{x+2}\)
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
a) ĐK:\(\left{\right. x + 2 \neq 0 \\ x - 2 \neq 0\)⇔\(\left{\right. x \neq - 2 \\ x \neq 2\)
Vậy biểu thức P xác định khi x≠ -2 và x≠ 2
b) P= \(\frac{3}{x + 2}\)-\(\frac{2}{2 - x}\)-\(\frac{8}{x^{2} - 4}\)
P=\(\frac{3}{x + 2}\)+\(\frac{2}{x - 2}\)-\(\frac{8}{\left(\right. x - 2 \left.\right) \left(\right. x + 2 \left.\right)}\)
P= \(\frac{3 \left(\right. x - 2 \left.\right)}{\left(\right. x - 2 \left.\right) \left(\right. x + 2 \left.\right)}\)+\(\frac{2 \left(\right. x + 2 \left.\right)}{\left(\right. x - 2 \left.\right) \left(\right. x + 2 \left.\right)}\)-\(\frac{8}{\left(\right. x - 2 \left.\right) \left(\right. x + 2 \left.\right)}\)
P= \( \frac{3 x - 6 + 2 x + 4 - 8}{\left(\right. x - 2 \left.\right) \left(\right. x + 2 \left.\right)}\)
P=\(\frac{5 x - 10}{\left(\right. x - 2 \left.\right) \left(\right. x + 2 \left.\right)}\)
P=\(\frac{5 \left(\right. x - 2 \left.\right)}{\left(\right. x - 2 \left.\right) \left(\right. x + 2 \left.\right)}\)
P=\(\frac{5}{x + 2}\)
Vậy P=\(\frac{5}{x + 2}\)