tìm x biết
a)x-1/x+2=x-2/x+3
b) (5x-1/2)*(2x-1/3)=0
Tìm x biết
a, 3/7 - x = 1/2x - 3
b, 5x - 2/3 = 5/3 - 2x
\(a,\dfrac{3}{7}-x=\dfrac{1}{2}x-3\)
\(\Rightarrow-x-\dfrac{1}{2}x=-3-\dfrac{3}{7}\)
\(\Rightarrow-\dfrac{3}{2}x=-\dfrac{24}{7}\)
\(\Rightarrow x=-\dfrac{24}{7}:\left(-\dfrac{3}{2}\right)\)
\(\Rightarrow x=\dfrac{16}{7}\)
\(b,5x-\dfrac{2}{3}=\dfrac{5}{3}-2x\)
\(\Rightarrow5x+2x=\dfrac{5}{3}+\dfrac{2}{3}\)
\(\Rightarrow7x=\dfrac{7}{3}\)
\(\Rightarrow x=\dfrac{7}{3}:7\)
\(\Rightarrow x=\dfrac{1}{3}\)
#Toru
a: 3/7-x=1/2x-3
=>-3/2x=-3+3/7
=>-1/2x=-1+1/7=-6/7
=>1/2x=6/7
=>x=6/7*2=12/7
b: =>5x+2x=5/3+2/3
=>7x=7/3
=>x=1/3
Bài 3 : Tìm x biết
a) (x-2)^2-x(x-3)=0
b) (x+3)(2x+1)-2(x-1)^2=0
c) (4x-5)^2=9(2-5x)^2
d) X^2-6x-13=0
e) (x+2)(x^2-2x+4)-x(x^2+2)=15
f) X^3-6x^2+12x-19=0
e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
f: Ta có: \(x^3-6x^2+12x-19=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)
\(\Leftrightarrow\left(x-2\right)^3=11\)
hay \(x=\sqrt[3]{11}+2\)
bài 1: tim x, biết
a,x.(x - 2) + x - 2 = 0
b,x3 + x + x + 1 = 0
c,5x.(x - 4) = 2x + 8
d,(5x - 4)2 - 49x2 = 0
a,x(x-2)+x-2=0
⇔ (x-2)(x+1)=0
⇔ x=2;x=-1
b,x3+x2+x+1=0
⇔ x2(x+1)+x+1=0
⇔ (x+1)(x2+1)=0
⇔ x=-1
1 phân tích đa thức thành nhân tử
a,\(3x^2-6xy+3y^2\)
b,\(\left(x-y\right)^2-4x^2\)
2.tìm x biết
a,2x(x-3)-x+3=0
b,\(x^2+5x+6=0\)
`1)`
`a)3x^2-6xy+3y^2=3(x^2-2xy+y^2)=3(x-y)^2`
`b)(x-y)^2-4x^2=(x-y-2x)(x-y+2x)=(-x-y)(3x-y)`
`2)`
`a)2x(x-3)-x+3=0`
`<=>2x(x-3)-(x-3)=0`
`<=>(x-3)(2x-1)=0`
`<=>[(x=3),(x=1/2):}`
`b)x^2+5x+6=0`
`<=>x^2+2x+3x+6=0`
`<=>(x+2)(x+3)=0`
`<=>[(x=-2),(x=-3):}`
tìm x biết
a)2 ( x - y )= 12
b)5x (x - 3 )-2x +6=0
c)7x (x - 4)-2 (x - 4)=0
d)(x -1 )(x +1 ) -x(x +3)=
Lời giải:
a. Đề có cả x,y. Bạn xem lại
b.
PT $\Leftrightarrow 5x(x-3)-2(x-3)=0$
$\Leftrightarrow (x-3)(5x-2)=0$
$\Leftrightarrow x-3=0$ hoặc $5x-2=0$
$\Leftrightarrow x=3$ hoặc $x=\frac{2}{5}$
c.
PT $\Leftrightarrow (7x-2)(x-4)=0$
$\Leftrightarrow 7x-2=0$ hoặc $x-4=0$
$\Leftrightarrow x=\frac{2}{7}$ hoặc $x=4$
d. Đề thiếu.
Bài 1:Thực hiện phép tính
a,(5-2x)(x+3)-4x(x+2) b,(3x+1)(x-3)-4(x+2)(x-2)
c,3(x-4)(x+3)+(x-5)(x+3) d,2x(x-4)+(3x-1)(2x-5)
Bài 2:Tìm x biết
a,5x(x+3)-(5x+2)(x+3)=7
b,(3x-1)(3x+2)-9(x+2)(x-2)=10
c,(x+1)(2x-5)+2(3-x)(x+2)=7
d,(1-3x)(x+2)+3x(x-5)=8
Bài 10. Tìm x, biết
a) (x+2)2-x(x+3)+5x=-20 c) (x2-1)3-(x4+x2+1)(x2-1)=0
b) 5x3-10x2+5x=0 d) (x+1)3-(x-1)3-6(x-1)2=-19
Bài 10:
a) (x+2)2 -x(x+3) + 5x = -20
=> x2 + 4x + 4 - x2 - 3x + 5x = -20
=> 6x = -20 + (-4)
=> 6x = -24
=> x = -4
b) 5x3-10x2+5x=0
=>5x(x2-2x+1)=0
=>5x(x-1)2 =0
=> 5x=0 hoặc (x-1)2=0
=>x=0 hoặc x=1
c) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
=> (x2 - 1)[(x2 - 1)2 - (x4 + x2 + 1)] = 0
<=> (x2 - 1)(x4 - 2x2 + 1 - x4 - x2 - 1) = 0
<=> (x2 - 1)(-3x2) = 0
<=> (x2 - 1)=0 hoặc (-3x2) =0
<=> x2=1 hoặc x2=0
<=> x=−1;1 hoặc x=0
d)
(x+1)3−(x−1)3−6(x−1)2=-19
⇔x3+3x2+3x+1−(x3−3x2+3x−1)−6(x2−2x+1)+19=0
⇔x3+3x2+3x+1−x3+3x2−3x+1−6x2+12x−6+19=0
⇔12x+13=0⇔12x+13=0
⇔12x=-13
⇔x=-23/12
Học tốt nhé:333
1. tìm x biết
a, (2x - 3)\(^2\) = |3 - 2x|
b, (x - 1)\(^2\) + (2x - 1)\(^2\) = 0
c, 5 - x\(^2\) = 1
d, x - 2\(\sqrt{x}\) = 0
g, (x - 1) + \(\dfrac{1}{7}\) = 0
`#3107.101107`
`1.`
`a,`
`(2x - 3)^2 = |3 - 2x|`
`=> (2x - 3)^2 = |2x - 3|`
`=>`\(\left[{}\begin{matrix}2x-3=\left(2x-3\right)^2\\2x-3=-\left(2x-3\right)^2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3-\left(2x-3\right)^2=0\\2x-3+\left(2x-3\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\left(2x-3\right)\left(1-2x+3\right)=0\\\left(2x-3\right)\left(1+2x-3\right)=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x-3=0\\4-2x=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)
Vậy, `x \in {3/2; 2; 1}`
`b,`
`(x - 1)^2 + (2x - 1)^2 = 0`
`=>`\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(2x-1\right)^2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
`c,`
`5 - x^2 = 1`
`=> x^2 = 4`
`=> x^2 = (+-2)^2`
`=> x = +-2`
Vậy, `x \in {-2; 2}`
`d,`
`x - 2\sqrt{x} = 0`
`=> x^2 - (2\sqrt{x})^2 = 0`
`=> x^2 - 4x = 0`
`=> x(x - 4) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy, `x \in {0; 4}`
`g,`
`(x - 1) + 1/7 = 0`
`=> x - 1 + 1/7 = 0`
`=> x - 6/7 = 0`
`=> x = 6/7`
Vậy, `x = 6/7.`
Tìm x,biết
a)4x 9x2-1=0
b)(x+2)2 -(x+2)(x-3)=0
c)2x3-4x2+2x=0
d)(x-1)2-(2x+1)2=0
\(b,\Rightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Rightarrow5\left(x+2\right)=0\\ \Rightarrow x=-2\\ c,\Rightarrow2x\left(x^2-2x+1\right)=0\\ \Rightarrow2x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ d,\Rightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Rightarrow3x\left(-x-2\right)=0\\ \Rightarrow-3x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a)thiếu dấu
b)(x+2)2 -(x+2)(x-3)=0
(x+2)(x+2-x+3)=0
(x+2)5=0
x+2=0
x=-2
c)2x3-4x2+2x=0
2x(x2-2x+1)=0
2x(x-1)2
suy ra 2 trường hợp
x=0
x-1=0=>x=1
d)(x-1)2-(2x+1)2=0
(x-1-2x-1)(x-1+2x+1)=0
(x-2)3x=0
x=0
x=2
tìm x biết
a,5x(x-4)3(x+2)(x-4)=2x(x+1)
b,4x(x+2)-x(8x-5)=10
c,(x+3)(2x-5)=2x(x+4)
d,(3x-2)(x+5)-3x(x+4)=5
e,x(x-3)+2x(x+1)=3(x mũ2-4)
b: =>4x^2+8x-8x^2+5x-10=0
=>-4x^2+13x-10=0
=>x=2 hoặc x=5/4
c: =>2x^2-5x+6x-15=2x^2+8x
=>x-15=8x
=>-7x=15
=>x=-15/7
d: =>3x^2+15x-2x-10-3x^2-12x=5
=>x-10=5
=>x=15
e: =>x^2-3x+2x^2+2x=3x^2-12
=>-x=-12
=>x=12