Tìm điều kiện của tham số m để \(\frac{x-4\sqrt{x}-m}{\sqrt{4-x}}>0\),∀xϵ[0;4]
\(M=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{1}{2-\sqrt{x}}\right)\frac{x-4\sqrt{x}+4}{\sqrt{x}-1}\)
a) Tìm điều kiện x để M có nghĩa.
b) Rút gọn M
c) Tìm x để M<0
Tìm điều kiện tham số m để tồn tại x thỏa mãn \(\sqrt{x}\) + 4 = m ( \(\sqrt{x}\) + 5 )
ĐKXĐ: \(x\ge0\)
\(\sqrt{x}+4=m\sqrt{x}+5m\)
\(\Leftrightarrow\left(m-1\right)\sqrt{x}=4-5m\)
- Với \(m=1\) không tồn tại x
- Với \(m\ne1\Rightarrow\sqrt{x}=\dfrac{4-5m}{m-1}\)
Do \(\sqrt{x}\ge0\Rightarrow\dfrac{4-5m}{m-1}\ge0\Rightarrow\dfrac{4}{5}\le m< 1\)
BÀI 1. Cho hai biểu thức( điều kiện xác định x ≥ 0, x ≠ 25)
\(A=\frac{2\sqrt{x}}{3+\sqrt{x}};B=(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}):\frac{\sqrt{x}+3}{\sqrt{x}-5}\)
a) Tính giá trị biểu thức A khi x = 9
b) Rút gọn biểu thức B
c) Tìm giá trị nguyên của x để biểu thức B + A nhận giá trị nguyên
BÀI 2: Cho hàm số y = ( 2m - 5) x + 3 ( m là tham số)
a) Tìm điều kiện của tham số m để hàm số là bậc nhất
b) Tìm điều kiện của tham số m để hàm số đồng biến? Nghịch biến ?
ĐKXĐ: \(x\ge0;x\ne25\)
\(B=\left(\frac{15-\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right)\left(\frac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
\(=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right)\left(\frac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
\(=\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}+3}\)
Ta có \(A+B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{1}{\sqrt{x}+3}=\frac{2\sqrt{x}+1}{\sqrt{x}+3}=2-\frac{5}{\sqrt{x}+3}\)
Để A+B nguyên \(\Rightarrow5⋮\left(\sqrt{x}+3\right)\Rightarrow\sqrt{x}+3=Ư\left(5\right)\)
Mà \(\sqrt{x}+3\ge3\)
\(\Rightarrow\sqrt{x}+3=5\Rightarrow x=4\)
Bài 2:
Để hàm số đã cho là bậc nhất \(\Leftrightarrow2m-5\ne0\Rightarrow m\ne\frac{5}{2}\)
Để hàm số đã cho đồng biến \(\Leftrightarrow2m-5>0\Rightarrow m>\frac{5}{2}\)
Để hàm số đã cho nghịch biến \(\Leftrightarrow2m-5< 0\Rightarrow m< \frac{5}{2}\)
Câu 4: Cho biểu thức: \(M=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\) với \(x>0,\) \(x\) ≠ 1
a. Điều kiện biểu thức có nghĩa
b. Rút gọn M
c. Tìm \(x\) để M < 0
\(a,ĐK:x>0;x\ne1\\ b,M=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ M=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\sqrt{x}-1\\ c,M< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow0< x< 1\)
Cho biểu thức:
A = \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{x-2\sqrt{x}}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{x-4}\right)\)
điều kiện: x > 0 , x ≠ 4
a, Rút gọn A
b, Tính A khi x = \(4+2\sqrt{3}\)
c, Tìm x để A = 0
d, Tìm x để A > 0
\(A=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\left(\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1-2\right)}=\frac{3+\sqrt{3}}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3+\sqrt{3}}{2}\)
\(A=0\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}=0\Leftrightarrow\sqrt{x}+2=0\Leftrightarrow\sqrt{x}=-2< 0\) (vô nghiệm)
\(A>0\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)
Cho B = \(\frac{5\sqrt{x}}{\sqrt{x}-1}-\frac{26}{\sqrt{x}+3}-\frac{20}{x+2\sqrt{x}+3}\)
a) Tìm điều kiện xác định của B
b) Tính giá trị của biểu thức B khi x=0
c) Rút gọn biểu thức B
d) Tìm x để B=\(\frac{-1}{4}\)
e) Tìm x để B=\(\frac{\sqrt{x}+2}{5}\)
f) Tìm điều kiện của x để B<0
g) Tìm tập hợp các số tự nhiên x để B<0
h) Chứng minh rằng B<5
k) Tìm điều kiện của x để b<4
m) Tìm điều kiện của x để b>-1
n) Tìm x để B<\(\frac{-x+9\sqrt{x}-10}{\sqrt{x}+3}\)
q) Xét biểu thức N=B +\(\frac{30}{\sqrt{x}+3}\) .Tìm giá trị lớn nhất của biểu thức N
p) Tìm giá trị nhỏ nhất của biểu thức N
r) Tìm các số tự nhiên x để B là số nguyên
Tìm tất cả tham số `m` để bất phương trình `x^2-x+m(1-m)<=0` là hệ quả của bất phương trình `\sqrt{\sqrt{x-1}+4}-\sqrt{\sqrt{x-1}+1}>=1`?
`A.m=1/2`
`B.m<=0` hoặc `m>=1`
`C.m>=1`
`D.m<=0`
Với m = 1/2 thì bpt (1) \(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\le0\Leftrightarrow x=\dfrac{1}{2}\)
bpt(2) \(\sqrt{\sqrt{x-1}+4}-\sqrt{\sqrt{x-1}+1}\ge1\) ( ĐK : \(x\ge1\) )
\(\Leftrightarrow\sqrt{\sqrt{x-1}+4}\ge1+\sqrt{\sqrt{x-1}+1}\)
\(\Leftrightarrow\sqrt{x-1}+4\ge1+\sqrt{x-1}+1+2\sqrt{\sqrt{x-1}+1}\)
\(\Leftrightarrow2\ge2\sqrt{\sqrt{x-1}+1}\Leftrightarrow1\ge\sqrt{\sqrt{x-1}+1}\) \(\Leftrightarrow\sqrt{x-1}+1\le1\Leftrightarrow\sqrt{x-1}\le0\Leftrightarrow x=1\)
bpt (2) có no x = 1 . Loại A
Với m khác 1/2 \(x^2-x+m\left(1-m\right)\le0\)
\(\Leftrightarrow x^2-m^2-\left(x-m\right)\le0\) \(\Leftrightarrow\left(x-m\right)\left(x+m-1\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge m;x\le1-m\\x\le m;x\ge1-m\end{matrix}\right.\)
Vì bpt (1) là hệ quả bpt (2) nên bpt (1) có no x = 1
Khi đó : \(\left[{}\begin{matrix}1\ge m;1\le1-m\\1\le m;1\ge1-m\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge1\end{matrix}\right.\)
Chọn B
Tìm tất cả tham số mm để bất phương trình x2−x+m(1−m)≤0x2-x+m(1-m)≤0 là hệ quả của bất phương trình √√x−1+4−√√x−1+1≥1x-1+4-x-1+1≥1?
A.m=12A.m=12
B.m≤0B.m≤0 hoặc m≥1m≥1
C.m≥1C.m≥1
D.m≤0D.m≤0
Tìm điều kiện của tham số m để hệ sau đây có nghiệm
\(\left\{{}\begin{matrix}x+\sqrt{x^2+16}\le\dfrac{40}{\sqrt{x^2+16}}\\x\left(x-2\right)\left(\sqrt{x^2+y^2+3}-1\right)+\left(x^3+x+m-2\right)^2=0\end{matrix}\right.\)
B1: Cho biểu thức M = \(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}:\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}-3}{\sqrt{a}-1}\right)\)
a) tìm điều kiện của A để M đc xđ
b) rút gọn M
c) tìm điều kiện của A để M > 0
B2: Tìm x biết : \(\sqrt{9x+45}-2\sqrt{5+x}=7\)
Bài 2:
\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)
\(\Leftrightarrow\sqrt{x+5}=7\)
=>x+5=25
hay x=18