Tìm x biết
\(\sqrt{7-x}=x-1\)
Cho: \(A=\dfrac{3\sqrt{x}}{-x-5\sqrt{x}-1}\)
a) Tìm x biết \(A=\dfrac{2}{3}\)
b) Tìm A biết \(x=7-2\sqrt{6}\)
c) Tìm GTNN của A
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
tìm x biết
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=7\)
Tìm x biết:
\(\sqrt{7+\sqrt{2+\sqrt{x+1}}}=3 \)
Điều kiện: x \(\ge\)-1
\(\sqrt{7+\sqrt{2+\sqrt{x+1}}}=3\\ \Leftrightarrow\sqrt{2+\sqrt{x+1}}=2\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\left(tm\right)\)
Tìm x, biết:
\(\sqrt{x-1}+\sqrt{x+2}=\sqrt{x+34}-\sqrt{x+7}\)
bài này bình phương hai vế lên là ra hết
Mk đag cần gấp mn giúp mk vs ạ !
Câu 1 Tìm x , biết
a)\(\sqrt{4\text{x}^2+4\text{x}+1}=6\)
b)\(\sqrt{4\text{x}^2-4\sqrt{7}x+7=\sqrt{7}}\)
c\(\sqrt{x^2+2\sqrt{3}x+3}=2\sqrt[]{3}\)
d)\(\sqrt{\left(x-3\right)^2}=9\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)
d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)
Câu 3: Tìm x biết:
a. \(\sqrt{\left(2x-1\right)^2}\)= x + 1
b. \(\sqrt{x+3}=5\)
c. \(\sqrt{x+2}=\sqrt{7}\)
b)\(\sqrt{x+3}=\sqrt{25}\)
x+3=5
x=2
Vậy x=2
Tìm x biết: \(\dfrac{x-2}{\sqrt{x}+1}=\dfrac{7}{4}\)
Điều kiện: \(x\ge0\)
\(\Leftrightarrow4\left(x-2\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow4x-8=7\sqrt{x}+7\)
\(\Leftrightarrow4x-15=7\sqrt{x}\)
\(\Leftrightarrow\left(4x-15\right)^2=\left(7\sqrt{x}\right)^2\)
\(\Leftrightarrow16x^2-169x+225=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=9\\x_2=\dfrac{25}{16}\end{matrix}\right.\) (nhận).
Thử lại nghiệm của bài toán, ta nhận giá trị x = 9.
Vậy giá trị cần tìm của x là 9.
Bước 1: Nhân đôi cả hai vế của phương trình để loại bỏ dấu chia:
2(x-2)/√(x+1) = 7/4
Bước 2: Bình phương cả hai vế của phương trình:
[2(x-2)/√(x+1)]^2 = (7/4)^2
Bước 3: Tính toán và giải phương trình bậc hai thu được:
16x^2 - 60x + 49 = 0
Bước 4: Giải phương trình bằng công thức:
Δ = b^2 - 4ac = (-60)^2 - 4(16)(49) = 3600 - 3136 = 464
x1 = [60 + √(464)] / 32 ≈ 2.44
x2 = [60 - √(464)] / 32 ≈ 0.45
Vậy, phương trình có hai nghiệm là x1 ≈ 2.44 và x2 ≈ 0.45.
=>4x-8=7căn x+7
=>4x-7căn x-15=0
=>căn x=(7+căn 129)/8
=>x=(89+7 căn 129)/32
Tìm x biết:
\(\sqrt{x^4+4}+\sqrt{x^{2010}+1}+7.x^{2010}=3\)
CHO BT: P=\(\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
a) rg p
b) tính gt p biết x = \(\frac{53}{9-2\sqrt{7}}\)
c) tìm gtnn của \(\frac{1}{p}\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks