Tìm x
x2 - 9x + 2=0
Câu 2.(1,5 điểm) Tìm x, biết:
a) 5x(x2 – 9) = 0. b) 3(x+3) - x2 - 3x =0. c) x2 – 9x – 10 = 0
\(a,5x\left(x^2-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,3\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow3\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ c,x^2-9x-10=0\\ \Leftrightarrow x^2+x-10x-10=0\\ \Leftrightarrow x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)
a, 5\(x\)(\(x^2\) - 9) = 0
\(\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -3; 0; 3}
b, 3.(\(x+3\)) - \(x^2\) - 3\(x\) = 0
3.(\(x+3\)) - \(x\).( \(x\) + 3) = 0
(\(x+3\))( 3 - \(x\)) = 0
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\){ -3; 3}
c, \(x^2\) - 9\(x\) - 10 = 0
\(x^2\) + \(x\) - 10\(x\) - 10 = 0
\(x.\left(x+1\right)\) - 10.( \(x-1\)) = 0
(\(x+1\))(\(x-10\)) = 0
\(\left[{}\begin{matrix}x+1=0\\x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)
Vậy \(x\) \(\in\){ -1; 10}
a) 5x(x2-9)=0
=> TH1 5x=0
<=> x= 0
TH2: 2x-9=0
<=> 2x=9
<=> x = \(\dfrac{9}{2}\)
b, 3(x+3) - x2- 3x = 0
<=> 3x + 9 - x2 -3x = 0
<=> - x2 +9 = 0
<=> - x2 = -9
<=> x = 3
c, x2 -9x -10 = 0
<=> x2 -x + 10x -10 = 0
<=> x(x-1)+10(x-1)=0
<=> (x-1)(x+10)=0
=> TH1: x-1=0
<=> x=1
TH2: x +10=0
<=> x=-10
Tìm x:
a) x2+9x=0
b) (x+4)2-16=0
c) x3-16x=0
d) x2-10x+25=0
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
Bài 4: Tìm x:
1) x2 - 9x = 0 2) x(x - 4) – x2 = 7 3) 3x + 2(x – 5) = 5
4) 25x2 - 1 = 0 5) 3x(x - 2) - 5(x - 2) = 0 6) 3x(x - 7) + 4(x – 7) = 0
7) 4x2 – 9 = 0 8) 10x(x - 4) + 2x - 8 = 0 9) x(2x - 5) - 2x2 = 0
10) 2x2 – 4x = 0 11) 2x(3 - 4x) + 3(4x - 3) = 0 12) 2x (x – 5) – 2x2 = 3
mọi người giúp mình vs chiều 1g mình thi rồi! cảm ơn!
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
1) \(x^2-9x=0\Rightarrow x\left(x-9\right)=0\Rightarrow x=0;9\)
2) \(x\left(x-4\right)-x^2=7\Rightarrow-4x=7\Rightarrow x=-\dfrac{7}{4}\)
3) \(3x+2\left(x-5\right)=5\Rightarrow5x-10=5\Rightarrow5x=15\Rightarrow x=3\)
4) \(25x^2-1=0\Rightarrow x^2=\dfrac{1}{25}\Rightarrow x=\pm\dfrac{1}{5}\)
5) \(3x\left(x-2\right)-5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(3x-5\right)=0\Rightarrow x=2;\dfrac{5}{3}\)
6) \(3x\left(x-7\right)+4\left(x-7\right)\Rightarrow\left(3x+4\right)\left(x-7\right)=0\Rightarrow x=-\dfrac{4}{3};7\)
7) \(4x^2-9=0\Rightarrow x^2=\dfrac{9}{4}\Rightarrow x=\pm\dfrac{3}{2}\)
8) \(10x\left(x-4\right)+2x-8=0\Rightarrow2\left(x-4\right)\left(5x+1\right)=0\Rightarrow x=4;-\dfrac{1}{5}\)
9) \(x\left(2x-5\right)-2x^2=0\Rightarrow x\left(2x-5-2x=0\right)\Rightarrow x=0\)
10) \(2x^2-4x=0\Rightarrow2x\left(x-2\right)=0\Rightarrow x=0;2\)
11) \(2x\left(3-4x\right)+3\left(4x-3\right)=0\Rightarrow2x\left(4x-3\right)-3\left(4x-3\right)=0\Rightarrow\left(4x-3\right)\left(2x-3\right)=0\Rightarrow x=\dfrac{3}{4};\dfrac{3}{2}\)
12) \(2x\left(x-5\right)-2x^2=3\Rightarrow-10x=3\Rightarrow x=-\dfrac{3}{10}\)
Tìm x biết:
a) x3 - 7x2 - 9x + 63 = 0
b) x3 - 3x2 + 3x - 1 + 2.(x2 - x) = 0
a) (x – 2)(x2 + 2x + 4) – x( x2 +2) = 12 b) (x – 3)2 – (x+2)(x–2) = 16
c) x3 – 9x = 0 d) x3 – 6x2 + 9x – 54 = 0
giúp e vs ạ
\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0
b) 9.(2x+1)2-4.(x+1)2=0
c) x3-6x2+9x=0
d) x2.(x+1)-x.(x+1)+x.(x-1)=0
a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)
\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)
Do \(\left(x+1\right)^2+1>0\)
\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Tìm x biết.
a)(x+2)3-x2(x+6)=0
b) (2x+3)3-8x(x-1)(x+1)=9x(4x-3)
c)(2-x)3+(2+x)3-12x(x+1)=0
a) \(\left(x+2\right)^3-x^2\left(x+6\right)=0\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=0\)
\(\Leftrightarrow12x+8=0\)
\(\Leftrightarrow12x=-8\)
\(\Leftrightarrow x=-\dfrac{8}{12}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(2x+3\right)^3-8x\left(x+1\right)\left(x-1\right)=9x\left(4x-3\right)\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x\left(x^2-1\right)=36x^2-27x\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3+8x=36x^2-27x\)
\(\Leftrightarrow8x^3-8x^3+36x^2-36x^2+54x+27x+8x+27=0\)
\(\Leftrightarrow89x+27=0\)
\(\Leftrightarrow x=-\dfrac{27}{89}\)
c) \(\left(2-x\right)^3+\left(2+x\right)^3-12x\left(x+1\right)=0\)
\(\Leftrightarrow8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x^2-12x=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(6x^2+6x^2-12x^2\right)-\left(12x-12x\right)+12x+\left(8+8\right)=0\)
\(\Leftrightarrow12x+16=0\)
\(\Leftrightarrow x=-\dfrac{16}{12}\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
`#040911`
`a)`
`(x + 2)^3 - x^2(x + 6) = 0`
`<=> x^3 + 6x^2 + 12x + 8 - x^3 - 6x^2 = 0`
`<=> (x^3 - x^3) + (6x^2 - 6x^2) + 12x = 0`
`<=> 12x = 0`
`<=> x = 0`
Vậy, `x = 0.`
`b)`
`(2x + 3)^3 - 8x(x - 1)(x + 1) = 9x(4x - 3)`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x(x^2 - 1) = 36x^2 - 27x`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x^3 + 8x - 36x^2 + 27x = 0`
`<=> (8x^3 - 8x^3) + (36x^2 - 36x^2) + (54x + 8x + 27x) + 27 = 0`
`<=> 89x + 27 = 0`
`<=> 89x = -27`
`<=> x = -27/89`
Vậy, `x = -27/89`
`c)`
`(2 - x)^3 + (2 + x)^3 - 12x(x + 1) = 0`
`<=> 8 - 12x + 6x^2 - x^3 + 8 + 12x + 6x^2 + x^3 - 12x^2 - 12x = 0`
`<=> (-x^3 + x^3) + (12x - 12x - 12x) + (6x^2 + 6x^2 - 12x^2) + (8 + 8)=0`
`<=> -12x + 16 = 0`
`<=> -12x = -16`
`<=> 12x = 16`
`<=> x=4/3`
Vậy, `x = 4/3.`
Bài 5. Tìm x, biết:
a) x (2x - 7) + 4x -14 = 0
b) x3 - 9x = 0
c) 4x2 -1 - 2(2x -1)2 = 0
d) (x3 - x2 ) - 4x2 + 8x - 4 = 0
\(a,\Leftrightarrow x\left(2x-7\right)+2\left(2x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{7}{2}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-2\left(2x-1\right)^2=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-4x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(-2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0 d) x2.(x+1)-x.(x+1)+x.(x-1)=0
b) 9.(2x+1)2-4.(x+1)2=0 e) (x-2)2-(x-2).(x+2)=0
c) x3-6x2+9x=0 g) x4-2x2+1=0
h) 4x2+y2-20x-2y+26=0 i) x2-2x+5+y2-4y=0
Tìm x, biết:
a ) 16 x = 8 b ) 4 x = 5 c ) 9 x - 1 = 21 d ) 4 1 - x 2 - 6 = 0
a) √16x = 8 (điều kiện: x ≥ 0)
⇔ 16x = 82 ⇔ 16x = 64 ⇔ x = 4
(Hoặc: √16x = 8 ⇔ √16.√x = 8
⇔ 4√x = 8 ⇔ √x = 2 ⇔ x = 4)
b) điều kiện: x ≥ 0
c) điều kiện: x - 1 ≥ 0 ⇔ x ≥ 1 (*)
x = 50 thỏa mãn điều kiện (*) nên x = 50 là nghiệm của phương trình.
d) Vì (1 - x)2 ≥ 0 ∀x nên phương trình xác định với mọi giá trị của x.
- Khi 1 – x ≥ 0 ⇔ x ≤ 1
Ta có: 2|1 – x| = 6 ⇔ 2(1 – x) = 6 ⇔ 2(1 – x) = 6
⇔ –2x = 4 ⇔ x = –2 (nhận)
- Khi 1 – x < 0 ⇔ x > 1
Ta có: 2|1 – x| = 6 ⇔ 2[– (1 – x)] = 6
⇔ x – 1 = 3 ⇔ x = 4 (nhận)
Vậy phương trình có hai nghiệm: x = - 2; x = 4