Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tâm Cao
Xem chi tiết
A Lan
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2020 lúc 8:48

\(\left\{{}\begin{matrix}\left|sinx\right|\le1\\\left|cosx\right|\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin^{4034}x\le sin^2x\\cos^{4038}x\le cos^2x\end{matrix}\right.\)

\(\Rightarrow sin^{4034}x+cos^{4038}x< sin^2x+cos^2x=1\) (dấu = ko xảy ra)

\(\Rightarrow\left|sin^{2017}x-cos^{2019}x\right|< \sqrt{\left(1+1\right)\left(sin^2x+cos^2x\right)}=\sqrt{2}\)

\(\Rightarrow sin^{2017}x-cos^{2019}x+\sqrt{2}>0\) \(\forall x\)

Vậy để hàm số xác định với mọi x trên đoạn đã cho

\(\Rightarrow m-sinx-cosx-2sinx.cosx\ge0\) \(\forall x\)

\(\Leftrightarrow sinx+cosx+2sinx.cosx\le m\)

Đặt \(sinx+cosx=t\Rightarrow2sinx.cosx=t^2-1\) \(\left(-1\le t\le\sqrt{2}\right)\)

\(\Rightarrow t^2+t-1\le m\Rightarrow m\ge\max\limits_{\left[-1;\sqrt{2}\right]}\left(t^2+t-1\right)=\sqrt{2}+1\)

Vậy \(m\ge\sqrt{2}+1\)

Khách vãng lai đã xóa
Phan uyển nhi
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2021 lúc 22:15

\(S=sinx+siny+sin\left(3x+y\right)-sin\left(3x+y\right)-sin\left(x+y\right)\)

\(=sinx+siny-sin\left(x+y\right)\)

\(S^2=\left(sinx+siny-sin\left(x+y\right)\right)^2\le3\left(sin^2x+sin^2y+sin^2\left(x+y\right)\right)\)

\(S^2\le3\left(1-\dfrac{1}{2}\left(cos2x+cos2y\right)+sin^2\left(x+y\right)\right)\)

\(S^2\le3\left[1-cos\left(x+y\right)cos\left(x-y\right)+1-cos^2\left(x-y\right)\right]\)

\(S^2\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)-\left[cos\left(x-y\right)-\dfrac{1}{2}cos\left(x+y\right)\right]^2\right]\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)\right]\)

\(S^2\le3\left(2+\dfrac{1}{4}\right)=\dfrac{27}{4}\)

\(\Rightarrow S\le\dfrac{3\sqrt{3}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\\c=2\end{matrix}\right.\)

Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 18:29

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)

Khách vãng lai đã xóa
Karry Angel
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2019 lúc 22:53

a/

\(\frac{1}{sinx}+\frac{cosx}{sinx}=\frac{1+cosx}{sinx}=\frac{1+2cos^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}=cot\frac{x}{2}\)

b/

\(\frac{1-cosx}{sinx}=\frac{1-\left(1-2sin^2\frac{x}{2}\right)}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=tan\frac{x}{2}\)

c/

\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\left(\frac{1-cosx}{sinx}\right)\left(\frac{1}{cosx}+1\right)=\frac{\left(1-cosx\right)\left(1+cosx\right)}{sinx.cosx}=\frac{1-cos^2x}{sinx.cosx}\)

\(=\frac{sin^2x}{sinx.cosx}=\frac{sinx}{cosx}=tanx\)

d/

\(\frac{sin2a}{2cosa\left(1+cosa\right)}=\frac{2sina.cosa}{2cosa\left(1+2cos^2\frac{a}{2}-1\right)}=\frac{sina}{2cos^2\frac{a}{2}}=\frac{2sin\frac{a}{2}cos\frac{a}{2}}{2cos^2\frac{a}{2}}=tan\frac{a}{2}\)

e/

\(cotx+tan\frac{x}{2}=\frac{cosx}{sin}+\frac{1-cosx}{sinx}=\frac{cosx+1-cosx}{sinx}=\frac{1}{sinx}\)

Các câu c, e đều sử dụng kết quả từ câu b

Nguyễn Việt Lâm
14 tháng 4 2019 lúc 22:59

f/

\(3-4cos2x+cos4x=3-4cos2x+2cos^22x-1\)

\(=2cos^22x-4cos2x+2=2\left(cos^22x-2cos2x+1\right)\)

\(=2\left(cos2x-1\right)^2=2\left(1-2sin^2x-1\right)^2\)

\(=2.\left(-2sin^2x\right)^2=8sin^4x\)

g/

\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)

h/

\(sinx+cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}+cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

i/

\(sinx-cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}-cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

j/

\(cosx-sinx=\sqrt{2}\left(cosx.\frac{\sqrt{2}}{2}-sinx\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

Karry Angel
14 tháng 4 2019 lúc 20:38

Ai đó giúp mình với!

vvvvvvvv
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2019 lúc 18:09

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

Ngoc Anh Nguyen
30 tháng 4 2019 lúc 11:15

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là

Lê Song Phương
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2023 lúc 17:36

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
26 tháng 2 2023 lúc 17:40

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

Nguyễn Việt Lâm
26 tháng 2 2023 lúc 17:42

c.

\(2\sqrt{2}cos\left(\dfrac{5\pi}{12}-x\right)sinx=1\)

\(\Leftrightarrow\sqrt{2}\left(sin\left(\dfrac{5\pi}{12}\right)+sin\left(2x-\dfrac{5\pi}{12}\right)\right)=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=\dfrac{-\sqrt{6}+\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{5\pi}{12}\right)=sin\left(-\dfrac{\pi}{12}\right)\)

\(\Leftrightarrow...\)

nguyễn đình thành
Xem chi tiết
Qasalt
25 tháng 4 2023 lúc 17:30

Này là kiến thức lớp 10 mà bạn...