Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
A Lan

Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x+\sqrt{2}}}\) xác định với mọi \(x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\) ?

Nguyễn Việt Lâm
25 tháng 2 2020 lúc 8:48

\(\left\{{}\begin{matrix}\left|sinx\right|\le1\\\left|cosx\right|\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin^{4034}x\le sin^2x\\cos^{4038}x\le cos^2x\end{matrix}\right.\)

\(\Rightarrow sin^{4034}x+cos^{4038}x< sin^2x+cos^2x=1\) (dấu = ko xảy ra)

\(\Rightarrow\left|sin^{2017}x-cos^{2019}x\right|< \sqrt{\left(1+1\right)\left(sin^2x+cos^2x\right)}=\sqrt{2}\)

\(\Rightarrow sin^{2017}x-cos^{2019}x+\sqrt{2}>0\) \(\forall x\)

Vậy để hàm số xác định với mọi x trên đoạn đã cho

\(\Rightarrow m-sinx-cosx-2sinx.cosx\ge0\) \(\forall x\)

\(\Leftrightarrow sinx+cosx+2sinx.cosx\le m\)

Đặt \(sinx+cosx=t\Rightarrow2sinx.cosx=t^2-1\) \(\left(-1\le t\le\sqrt{2}\right)\)

\(\Rightarrow t^2+t-1\le m\Rightarrow m\ge\max\limits_{\left[-1;\sqrt{2}\right]}\left(t^2+t-1\right)=\sqrt{2}+1\)

Vậy \(m\ge\sqrt{2}+1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
A Lan
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
vvvvvvvv
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
patrick9
Xem chi tiết
Cathy Trang
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Su Bi
Xem chi tiết