Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Văn Long Phước
Xem chi tiết
Ngoc Huy
Xem chi tiết
Phạm Kim Ngân
19 tháng 12 2020 lúc 20:24

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

Phạm Kim Ngân
19 tháng 12 2020 lúc 20:26

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

Vinh Thuy Duong
Xem chi tiết
missing you =
17 tháng 6 2021 lúc 7:27

\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)

dấu'=' xảy ra<=>x=1=>Max A=6

\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)

\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)

\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)

dấu"=" xảy ra<=>x=y=2=>Max B=10

\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

dấu'=' xảy ra<=>x=1,y=-3=>MinC=2

 

 

 

 

18. Phan Duy Đức Mạnh 8/...
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 10 2021 lúc 14:50

\(P=\left(x^2-6x+9\right)+\left(y^2-2y+1\right)+2\\ P=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\\ P_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2019 lúc 15:37

a) Kết quả bằng 3.           b) Kết quả bằng  1 2

Trần Hương Trà
Xem chi tiết
Trúc Giang
19 tháng 8 2021 lúc 9:34

undefined

Lấp La Lấp Lánh
19 tháng 8 2021 lúc 9:39

\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)+\left(2x-y\right)^2=\left(2x-y\right)\left(2+2x-y\right)\)

\(B=9x^2-\left(y^2-4y+4\right)=9x^2-\left(y-2\right)^2=\left(3x-y+2\right)\left(3x+y-2\right)\)

\(C=-25x^2+y^2-6y+9=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-\left(5x\right)^2=\left(y-3-5x\right)\left(y-3+5x\right)\)\(D=x^2-4x-y^2-8y-12=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)=\left(x-2\right)^2-\left(y+4\right)^2=\left(x-2-y-4\right)\left(x-2+y+4\right)=\left(x-y-6\right)\left(x+y+2\right)\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 14:45

a: Ta có: \(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)\)

\(=3\left(2x-y\right)+\left(2x-y\right)^2\)

\(=\left(2x-y\right)\left(2x-y+3\right)\)

b: Ta có: \(B=9x^2-\left(y^2-4y+4\right)\)

\(=9x^2-\left(y-2\right)^2\)

\(=\left(3x-y+2\right)\left(3x+y-2\right)\)

Akai Haruma
17 tháng 9 2023 lúc 17:52

Lời giải:

a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$

$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.

$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$

$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$

d. 

$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$

$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$

$=-x^2y+4x^2-2xy^2-10x$

$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$

Cao Hoàng an
Xem chi tiết
Đỗ Ngọc Hải
26 tháng 7 2018 lúc 21:26

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 7 2017 lúc 3:59

Phương trình của (C) là  x 2 + y 2 − 6 x + 4 y − 12 = 0   ⇔ x − 3 2 + y + 2 2 = 25

Đường tròn này có tâm I(3; -2) và bán kính R = 5.

Ta có tiếp tuyến tại A(-1; 1):  đi qua A, nhận A I →    ( 4 ;    − 3 )  làm VTPT nên có phương trình:

4(x +1) – 3 (y -1 ) = 0 hay 4x – 3y + 7 = 0  ó  - 4x + 3y -  7 = 0

Đáp án A