Giai BPT
\(\frac{\left(x-1\right)^3\left(x+2\right)^4}{x^2\left(x-7\right)^5}\ge0\)
Giai cac bpt sau
a,\(\left(x+1\right)\left(2x-2\right)-3>-5x-\left(2x+1\right)\left(3-x\right)\)
b,\(\left(x-3^{ }\right)^2+4\left(2-x\right)>\left(x+7\right)\)
a: \(\Leftrightarrow2x^2-2-3>-5x+\left(2x+1\right)\left(x-3\right)\)
\(\Leftrightarrow2x^2-5>-5x+2x^2-6x+x-3\)
\(\Leftrightarrow2x^2-5>2x^2-10x-3\)
=>-5>-10x-3
=>5<10x+3
=>10x+3>5
=>10x>2
hay x>1/5
b: \(\Leftrightarrow x^2-6x+9+8-4x>x+7\)
\(\Leftrightarrow x^2-10x+17-x-7>0\)
\(\Leftrightarrow x^2-11x+10>0\)
=>x>10 hoặc x<1
a: ⇔2x2−2−3>−5x+(2x+1)(x−3)⇔2x2−2−3>−5x+(2x+1)(x−3)
⇔2x2−5>−5x+2x2−6x+x−3⇔2x2−5>−5x+2x2−6x+x−3
⇔2x2−5>2x2−10x−3⇔2x2−5>2x2−10x−3
=>-5>-10x-3
=>5<10x+3
=>10x+3>5
=>10x>2
hay x>1/5
b: ⇔x2−6x+9+8−4x>x+7⇔x2−6x+9+8−4x>x+7
⇔x2−10x+17−x−7>0⇔x2−10x+17−x−7>0
⇔x2−11x+10>0⇔x2−11x+10>0
=>x>10 hoặc x<1
Giải bpt sau:
\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x-3\right)^5\left(x+6\right)}{x^2\left(x-7\right)^3}\le0\)
Giai cac bpt sau
a,\(\left(2x+3\right)\left(x+1\right)< 0\)
b,\(\left(4-x\right)\left(x+2\right)>0\)
a: (2x+3)(x+1)<0
=>2x+3 và x+1 khác dấu
=>x>-1 hoặc x<-3/2
b: (4-x)(x+2)>0
=>(x-4)(x+2)<0
=>-2<x<4
a: (2x+3)(x+1)<0
=>2x+3 và x+1 khác dấu
=>x>-1 hoặc x<-3/2
b: (4-x)(x+2)>0
=>(x-4)(x+2)<0
=>-2<x<4
Bài 2: Xét sự tương đương của các cặp BPT sau
a, \(4x-6+\frac{1}{x-2}\ge2+\frac{1}{x-2}\) và \(4x-8\ge0\)
b, \(3x-2+\frac{1}{x-3}\ge1+\frac{1}{x-3}\) và \(3x-3\ge0\)
c, \(x+4\ge0\) và \(\left(x-1\right)^2\left(x+4\right)>0\)
d,\(\left(x^2-4x+5\right)\left(x-5\right)>0\) và \(x-5>0\)
e, \(x-12\ge0\) và \(\left(x-2\right)^2\ge0\)
f, \(\sqrt{\left(x-1\right)\left(x-2\right)}\ge x\) và \(\sqrt{x-1}.\sqrt{x-2}\ge x\)
Bài 3. Giải bất phương trình
a, \(|5x – 3| < 2\)
b, \(\left|3x-2\right|\ge6\)
c, \(\left|2x-1\right|\le x+2\)
d, \(\left|3x+7\right|>2x+3\)
e, \(\sqrt{x-3}\ge\sqrt{3-x}\)
f, \(\sqrt{x-1}< 3+\sqrt{x-1}\)
g, \(\frac{x-2}{\sqrt{x-4}}\ge\frac{4}{\sqrt{x-4}}\)
h, \(\left(x+5\right)\sqrt{\left(x-3\right)\left(x^2-10x+25\right)}>0\)
mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
Giai các bpt sau
a,\(\left(x-1^{ }\right)^2+x^2\le\left(x+1\right)^2+\left(x+2^{ }\right)^2\)
b,\(\left(x^2+1\right)\left(x-6\right)\le\left(x-2\right)^3\)
\(a,\left(x-1\right)^2+x^2\le\left(x+1\right)^2+\left(x+2\right)^2\\ \Leftrightarrow x^2-2x+1+x^2\le x^2+2x+1+x^2+4x+4\\ \Leftrightarrow2x^2-2x+1\le2x^2+6x+5\\ \Leftrightarrow-8x-6\le0\\ \Leftrightarrow x\ge\dfrac{3}{4}\)
\(b,\left(x^2+1\right)\left(x-6\right)\le\left(x-2\right)^3\\ \Leftrightarrow x^3+x-6x^2-6\le x^3-6x^2+12x-8\\ \Leftrightarrow11x-2\ge0\\ \Leftrightarrow x\ge\dfrac{2}{11}\)
a: \(\Leftrightarrow x^2-2x+1+x^2< =x^2+2x+1+x^2+4x+4\)
=>-2x+1<=6x+5
=>-7x<=4
hay x>=-4/7
b: \(\Leftrightarrow x^3-6x^2+x-6-x^3+6x^2-12x+8< =0\)
=>-11x+2<=0
=>-11x<=-2
hay x>=2/11
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.
giải hệ bpt:
\(\left\{{}\begin{matrix}\frac{x^2+3x-1}{2-x}>-x\\\frac{\left(x-1\right)^3\left(x+2\right)^2\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\end{matrix}\right.\)
\(\frac{x^2+3x-1}{2-x}+x>0\Leftrightarrow\frac{5x-1}{2-x}>0\Rightarrow\frac{1}{5}< x< 2\)
\(\frac{\left(x-1\right)^3\left(x+2\right)^2\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x=-2\\1\le x< 2\\2< x< 7\end{matrix}\right.\)
Kết hợp lại ta có: \(1\le x< 2\)
tìm m để bpt vô nghiệm
\(\left|\frac{2\left(x+\frac{1}{x}\right)^2-\left(x-\frac{1}{x}\right)-7}{3\left(x+\frac{1}{x}\right)^2+\left(x-\frac{1}{x}\right)+m-12}\right|>2\)