Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Miner Đức
Xem chi tiết
Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 23:14

\(x^2-2x< 0\Leftrightarrow0< x< 2\) \(\Rightarrow D_1=\left(0;2\right)\)

Xét \(f\left(x\right)=x^2+2\left(m-1\right)x+m^2\ge0\) (1)

\(\Delta'=\left(m-1\right)^2-m^2=1-2m\)

- Với \(\Delta'\le0\Leftrightarrow m\ge\dfrac{1}{2}\) thì (1) luôn đúng \(\Leftrightarrow\) hệ có nghiệm

- Với \(m< \dfrac{1}{2}\) \(\Rightarrow\) gọi 2 nghiệm của (1) là \(x_1< x_2\) \(\Rightarrow D_2=(-\infty;x_1]\cup[x_2;+\infty)\)

Để hệ vô nghiệm \(\Leftrightarrow D_1\cap D_2=\varnothing\) \(\Leftrightarrow x_1\le0< 2\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\le0\\4+4\left(m-1\right)+m^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m^2+4m\le0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) Hệ có nghiệm khi \(m\ne0\)

Vậy 

Ngoc Nhi Tran
Xem chi tiết
anh em mình là 1 gia đìn...
Xem chi tiết
Akai Haruma
28 tháng 3 2021 lúc 20:55

Lời giải:

Nếu $x=-2$ thì HBPT $\Leftrightarrow $m\geq -2$

Nếu $x\neq -2$ thì HBPT \(\Leftrightarrow \left\{\begin{matrix} x+1\geq 0\\ x\leq m\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} x\geq -1\\ x\leq m\end{matrix}\right.\Leftrightarrow -1\leq x\leq m(*)\).

Giả sử $m>-1$ thì HBPT có vô số nghiệm thực $x$

Giả sử $m< -1$ thì $(*)$ vô lý nên HBPT chỉ có thể nhận nhiều nhất 1 nghiệm $x=-2$

Giả sử $m=-1$ thì $(*)$ có nghiệm $x=-1$. Tổng kết lại HBPT có 2 nghiệm $x=-1$ và $x=-2$

Nam Đàm
Xem chi tiết
lê hoàng yến nhi
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2020 lúc 7:55

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2m+\frac{1}{2}\\x\le3m-2\end{matrix}\right.\)

Để hệ đã cho có nghiệm

\(\Leftrightarrow-2m+\frac{1}{2}\le3m-2\)

\(\Leftrightarrow5m\ge\frac{5}{2}\Rightarrow m\ge\frac{1}{2}\)

Khách vãng lai đã xóa
Kinder
Xem chi tiết
Nguyen Thi Phung
Xem chi tiết
Lê Anh Duy
2 tháng 3 2019 lúc 14:54

a)

\(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)

\(\)Ta có

\(x^2+x+5=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\)

=> Bất phương trình đàu tiên sai, hệ bất phương trình sai

b)

\(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)\left(x+2\right)>0\\\left(x-3\right)\left(3x-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{3}\\x\ge3\end{matrix}\right.\end{matrix}\right.\)

Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 20:47

Lý thuyết cơ bản:

BPT: \(f\left(x\right)\le f\left(m\right)\)  có nghiệm \(x\in\left(a;b\right)\) khi và chỉ khi \(f\left(m\right)\ge\min\limits_{\left(a;b\right)}f\left(x\right)\)

BPT: \(f\left(x\right)\le f\left(m\right)\)  nghiệm đúng với mọi \(x\in\left(a;b\right)\) khi và chỉ khi \(f\left(m\right)\ge\max\limits_{\left(a;b\right)}f\left(x\right)\)

Nói tóm lại: có nghiệm thì so sánh với min, nghiệm đúng với mọi x thì so sánh với max

Trong trường hợp \(f\left(x\right)\ge f\left(m\right)\) thì làm ngược lại.

Ta có: \(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)

Xét \(x^3-3\left|x\right|x\ge m^2-6m\) trên \(\left[-1;4\right]\) 

BPT có nghiệm khi \(f\left(m\right)=m^2-6m\le\max\limits_{\left[-1;4\right]}f\left(x\right)\) với \(f\left(x\right)=x^3-3\left|x\right|x\)

- Với \(-1\le x\le0\Rightarrow f\left(x\right)=x^3+3x^2=x^3+3x^2-2+2\)

\(=\left(x+1\right)\left[\left(x+1\right)^2-3\right]+2\le2\)

- Với \(0\le x\le4\Rightarrow f\left(x\right)=x^3-3x^2=x^3-3x^2-16+16\)

\(=\left(x-4\right)\left(x^2+x+4\right)+16\le16\)

So sánh 2 giá trị 2 và 16 ta suy ra \(\max\limits_{\left[-1;4\right]}\left(x^3-3\left|x\right|x\right)=f\left(4\right)=16\)

\(\Rightarrow m^2-6m\le16\Leftrightarrow m^2-6m-16\le0\)

\(\Leftrightarrow-2\le m\le8\)

gãi hộ cái đít
21 tháng 2 2021 lúc 18:09

\(-8\le m\le2\)