hệ phương trình
1, left{{}begin{matrix}frac{1}{x+y}+frac{1}{x-y}frac{5}{8}frac{1}{x+y}-frac{1}{x-y}-frac{3}{8}end{matrix}right.
2, left{{}begin{matrix}frac{4}{2x-3y}+frac{5}{3x+y}2frac{3}{3x+y}-frac{5}{2x-3y}21end{matrix}right.
3, left{{}begin{matrix}frac{7}{x-y+2}+frac{5}{x+y-1}frac{9}{2}frac{3}{x-y+2}+frac{2}{x+y-1}4end{matrix}right.
4, left{{}begin{matrix}frac{3}{x}+frac{5}{y}-frac{3}{2}frac{5}{x}-frac{2}{y}frac{8}{3}end{matrix}right.
5 , left{{}begin{matrix}frac{2}{x+y-1}-frac{4}{x-y+1...
Đọc tiếp
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)