Cho \(P=\left(\frac{2}{x+4}+\frac{x+20}{x^2-16}\right).\frac{x-4}{x+5}\left(x\ne-5;x\ne-4;x\ne4\right)\)
a) Chứng tỏ : \(P=\frac{3}{x+5}\)
b) Tính giá trị của biểu thức với x thỏa mãn \(x^2+4x=0\)
c) Tìm giá trị nguyên của x để P có giá trị nguyên.
tìm x biết
a) \(\frac{x-1}{x+2}=\frac{4}{5}\left(x\ne-2\right)\) b)22x+1+4x+3=264 c)\(\frac{x^2}{-8}=\frac{27}{x}\left(x\ne0\right)\) d)\(\frac{x+7}{-20}=\frac{-5}{x+7}\left(x\ne-7\right)\) e)\(\frac{x}{-8}=\frac{2}{-x^3}\left(x\ne0\right)\)
a)Ta có:
\(\frac{x-1}{x+2}=\frac{4}{5}\Leftrightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Leftrightarrow5x-5=4x+8\)
\(\Leftrightarrow5x-4x=8+5\)
\(\Leftrightarrow x=13\)
b)Ta có:
\(2^{2x+1}+4^{x+3}=2^{2x+1}+2^{2x+6}=2^{2x+1}\left(1+2^5\right)=2^{2x+1}.33=264\Leftrightarrow2^{2x+1}=8=2^3\)\(\Rightarrow2x+1=3\Leftrightarrow2x=2\Leftrightarrow x=1\)
c)Ta có:
\(\frac{x^2}{-8}=\frac{27}{x}\Leftrightarrow x^3=-8.27=-216\Leftrightarrow x=-6\)
d)Ta có:
\(\frac{x+7}{-20}=\frac{-5}{x+7}\Leftrightarrow\left(x+7\right)^2=\left(-20\right)\left(-5\right)=100\Leftrightarrow\left[{}\begin{matrix}x+7=10\\x+7=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-17\end{matrix}\right.\)e)Ta có:
\(\frac{x}{-8}=\frac{2}{-x^3}\Leftrightarrow x.\left(-x^3\right)=-8.2\)
\(\Leftrightarrow-x^4=-16\Leftrightarrow x^4=16\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
giải các phương trình chứa ẩn ở mẫu sau đây dạng \(\frac{p\left(x\right)}{f\left(x\right)}+\frac{q\left(x\right)}{g\left(x\right)}+\frac{r\left(x\right)}{f\left(x\right).g\left(x\right)}=a\)
a) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
b) \(\frac{2x}{x+4}-\frac{4x}{x^2-16}=0\)
c) \(\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{9x^2-4}\)
a/ ĐKXĐ: \(x\ne\pm5\)
\(\Leftrightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)
\(\Leftrightarrow\left(x^2+10x+25\right)-\left(x^2-10x+25\right)=20\)
\(\Leftrightarrow20x=20\Rightarrow x=1\)
b/ ĐKXĐ: \(x\ne\pm4\)
\(\Leftrightarrow2x\left(x-4\right)-4x=0\)
\(\Leftrightarrow2x^2-12x=0\)
\(\Leftrightarrow2x\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm\frac{2}{3}\)
\(\Leftrightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow6x=16\Rightarrow x=\frac{8}{3}\)
Tìm x,biết
a, \(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
Với x ∉ -2,-5,-10,-17
b,\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Với x∉1,3,8,20
c,\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
c) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Leftrightarrow x=0+2010\)
\(\Rightarrow x=2010\)
Vậy \(x=2010.\)
Mình chỉ làm câu c) thôi nhé.
Chúc bạn học tốt!
Câu 21:
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge x^4y^4+\frac{x^8y^8}{2}-1-2x^2y^2-x^4y^4=\left(x^2y^2-1\right)^2+\frac{1}{2}\left(x^4y^4-1\right)^2-\frac{5}{2}\ge-\frac{5}{2}.\)
Dấu = xảy ra khi x=y=1
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
Bài 2 :
a, \(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
b, \(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{\left(x-20\right)}=\frac{-3}{4}\)
\(a.\frac{x-1}{x+2}=\frac{4}{5}\left(x\ne-2\right)\) e)\(\frac{x}{-8}=\frac{2}{-x^3}\left(x\ne0\right)\)
b)\(\frac{1}{12}:\frac{4}{21}=3\frac{1}{2}:\left(3x-2\right)\) F)\(\frac{x}{8}=\frac{x}{x^3}\left(x\ne0\right)\)
c)\(\frac{x^2}{-8}=\frac{27}{x}\left(x\ne0\right)\)
d)\(\frac{x+7}{-20}=\frac{-5}{x+7}\left(x\ne-7\right)\)
\(a.\frac{x-1}{x+2}=\frac{4}{5}\)
\(\Rightarrow\frac{x+2-3}{x+2}=\frac{4}{5}\)
\(\Rightarrow1-\frac{3}{x+2}=\frac{4}{5}\)
\(\Rightarrow\frac{3}{x+2}=1-\frac{4}{5}\)
\(\Rightarrow\frac{3}{x+2}=\frac{1}{5}\)
\(\Rightarrow\frac{3}{x+2}=\frac{3}{15}\Rightarrow x+2=15\)
\(\Rightarrow x=13\)( thỏa mãn )
Tìm x:
a,\(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{\frac{2}{5}+\frac{4}{9}-\frac{5}{11}}{\frac{8}{5}+\frac{16}{9}-\frac{20}{11}}\)
b,\(\left|2x-\frac{1}{3}\right|-\left(-2^2\right)=4\left(\frac{1}{-2}\right)^3\)
\(a;x:\left(9\dfrac{1}{2}-\dfrac{3}{2}\right)=\dfrac{\dfrac{2}{5}+\dfrac{4}{9}-\dfrac{5}{11}}{\dfrac{8}{5}+\dfrac{16}{9}-\dfrac{20}{11}}\\ x:8=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{4}\cdot8=2\)
\(b;\left|2x-\dfrac{1}{3}\right|-\left(-2^2\right)=4\left(\dfrac{1}{-2}\right)^3\\ \left|2x-\dfrac{1}{3}\right|+4=-\dfrac{1}{2}\\ \left|2x-\dfrac{1}{3}\right|=-\dfrac{1}{2}-4=-\dfrac{9}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=-\dfrac{9}{2}\Rightarrow x=-\dfrac{25}{12}\\2x-\dfrac{1}{3}=\dfrac{9}{2}\Rightarrow x=\dfrac{29}{12}\end{matrix}\right.\)