Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Bảo Vy
1 tháng 3 2023 lúc 16:33

Theo đề bài ra, ta có :

`A=1+32+34+36+....+32008`

\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`

`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`

\(\Rightarrow\) `8A=(-1)+32010`

\(\Rightarrow\) `8A-32010=(-1)`

@Nae

Nguyễn Bảo Vy
1 tháng 3 2023 lúc 16:34

Theo đề bài ra, ta có :

A=1+3^2+3^4+3^6+....+3^2008

 9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010

9A - A= (3^2+3^4+3^6+3^8+....+ 3^2010)- (1+3^2+3^4+3^6+....+ 3^2008)

8A = -1+3^2010

 8A - 3^2010 = (-1)

@Nae

zero 2401
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2021 lúc 9:34

Ta có: \(M=3^{2012}-3^{2011}+3^{2010}-3^{2009}\)

\(=\left(3^{2012}+3^{2010}\right)-\left(3^{2011}+3^{2009}\right)\)

\(=3^{2010}\cdot\left(3^2+1\right)-3^{2009}\left(3^2+1\right)\)

\(=\left(3^2+1\right)\cdot\left(3^{2010}-3^{2009}\right)\)

\(=10\cdot3^{2009}\cdot\left(3-1\right)⋮10\)(đpcm)

Trâm Vương
Xem chi tiết
santa
29 tháng 12 2020 lúc 23:06

S = 1 + 3 + 32 + 33 +... + 32014

3S = 3 + 32 + 33 + 34 + ... + 32015

3S - S = ( 3 + 32 + 33 + 34 + ... + 32015) - (1 + 3 + 32 + 33 +... + 32014)

2S = 32015 - 1

S = \(\dfrac{3^{2015}-1}{2}\)

duc_1412_gioiok
Xem chi tiết
Nguyễn Anh Quân
23 tháng 11 2017 lúc 20:10

Tổng trên = (31+32012).[(32012-31:1+1] : 2 = 32043 . 31982 : 2 = 42043 . 15991 lẻ

=> tổng trên ko chia hết cho 120

k mk nha

duc_1412_gioiok
23 tháng 11 2017 lúc 20:40

đề sai 

Son Goku
8 tháng 3 2018 lúc 21:54

Tổng trên có ​31982 số hạng

​Nên tổng trên bằng:(32012+31).31982/2

​=32043.15991 là số lẻ ko chia hết cho 120

​Tk mình nha bn !

Phạm Ngọc Thảo Nguyên
Xem chi tiết
Lê Minh Long
29 tháng 12 2016 lúc 22:01

tích tao nhé ahihi

Lê Minh Long
29 tháng 12 2016 lúc 22:00

không chia hết cho 120 vì tổng trên là số lẻ nên không chia hết cho một số chẵn

Phạm Ngọc Thảo Nguyên
30 tháng 12 2016 lúc 9:01

còn 1 cách nào khác hok bạn? mik hok hỉu một chút

Phan Lâm Thanh Trúc
Xem chi tiết
Akai Haruma
5 tháng 2 2024 lúc 18:04

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

Akai Haruma
5 tháng 2 2024 lúc 18:05

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

Akai Haruma
5 tháng 2 2024 lúc 18:06

Bài 2:

a. $7\vdots n+1$

$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$

$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$

b.

$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$

Tuyet Ngoc
Xem chi tiết
Phương Trâm
2 tháng 1 2017 lúc 16:55

Tổng 31 + 32 + 33 + 34 + 35 + … + 32012 không chia hết cho 120 vì tổng trên là một số lẻ, không chia hết cho một số chẵn.

hibarikykyo
2 tháng 1 2017 lúc 19:27

tổng trên không chia hết cho 120. Vì các số trên có tổng là số lẻ lên không chia hết cho số chẵn

Phương Trâm
2 tháng 1 2017 lúc 16:55

Thi HKI hả bạn?

Phan Lâm Thanh Trúc
Xem chi tiết
Kiều Vũ Linh
23 tháng 12 2023 lúc 12:07

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

Thư Đỗ Ngọc Anh
Xem chi tiết
Minh Hiếu
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

Hồng Hà Thị
Xem chi tiết