Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
fcfgđsfđ
Xem chi tiết
HT.Phong (9A5)
10 tháng 8 2023 lúc 8:45

Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)

Nên: \(x^2-x+1>0\)

Gấuu
10 tháng 8 2023 lúc 8:46

\(x^2-x+1\)

\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )

\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Mà:\left(x-\dfrac{1}{2}\right)^2>0\forall x\in R\\ Vậy:\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\\ Vậy:x^2-x+1>0\forall x\in R\)

vvvvvvvv
Xem chi tiết
Trần Nhật Quỳnh
17 tháng 1 2021 lúc 20:09

x2 > 2( x - 1 )

<=> x2 - 2x + 2 > 0

<=> ( x2 - 2x + 1 ) + 1 > 0

<=> ( x - 1 )2 + 1 > 0 ( luôn đúng ∀ x ∈ R )

Vậy bđt ban đầu được chứng minh

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 8 2017 lúc 11:42

Ta có:

Giải bài 82 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có: Giải bài 82 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8 với mọi số thực x

⇒ Giải bài 82 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8 với mọi số thực x

⇒ Giải bài 82 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8 với mọi số thực (ĐPCM)

Đỗ Việt Long
Xem chi tiết
le thai
22 tháng 10 2021 lúc 20:24

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 11 2017 lúc 16:42

Ta có:

x2 – 2xy + y2 + 1

= (x2 – 2xy + y2) + 1

= (x – y)2 + 1.

(x – y)2 ≥ 0 với mọi x, y ∈ R

⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).

Mye My
Xem chi tiết
Nhiêu Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2021 lúc 21:14

Ta có: \(-x^2+3x-4\)

\(=-\left(x^2-3x+4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}< 0\forall x\)

We bare bears
8 tháng 8 2021 lúc 21:14

$-x^2+3x-4\\=-x^2+2.x.\dfrac{3}{2}-\dfrac{9}{4}-\dfrac{7}{4}\\=-(x-\dfrac{3}{2})^2-\dfrac{7}{4}<0$

=> ĐPCM

Nguyễn Thị Kim Anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 8 2017 lúc 14:36

Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1

Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)

Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)

Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)

Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)

Ta có : x - x2 - 1

= -(x2 - x + 1)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)

Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Vậy x - x2 - 1 \(< 0\forall x\in R\)

Nguyễn Thị Kim Anh
11 tháng 8 2017 lúc 17:26

hỏi tí cái chữ A ngược đó là gì vậy bạn

Toàn Khánh
22 tháng 9 2017 lúc 18:45

chữ a ngược là với mọi x

Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết