Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ánh tuyết nguyễn
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 12 2022 lúc 23:11

Đặt \(tan\left(x+\dfrac{\pi}{3}\right)=t\)

\(\Rightarrow t^2+\left(\sqrt{3}-1\right)t-\sqrt{3}=0\)

\(\Leftrightarrow t\left(t-1\right)+\sqrt{3}\left(t-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan\left(x+\dfrac{\pi}{3}\right)=1\\tan\left(x+\dfrac{\pi}{3}\right)=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=-\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\)

Bình Trần Thị
Xem chi tiết
Trọng Nghĩa Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 22:57

a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)

=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)

=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)

b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)

=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)

c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)

=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)

=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)

=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)

=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)

=>\(x=\dfrac{1}{4}\Omega+k\Omega\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 8:00

loading...  loading...  

M Thiện Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 17:53

1.

\(\Leftrightarrow cos\left(2x+\dfrac{4\pi}{3}\right)=0\)

\(\Leftrightarrow2x+\dfrac{4\pi}{3}=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow2x=-\dfrac{5\pi}{6}+k\pi\)

\(\Leftrightarrow x=-\dfrac{5\pi}{12}+\dfrac{k\pi}{2}\)

b.

\(\Leftrightarrow2+2cos\left(2x+\dfrac{\pi}{3}\right)-3=0\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

c.

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:11

a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi  - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)

b) \(2\cos x =  - \sqrt 2 \;\; \Leftrightarrow \cos x =  - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x =  - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)

c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)

\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)

Bình Trần Thị
Xem chi tiết
Lightning Farron
8 tháng 9 2016 lúc 19:12

b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)

Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên

\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)

\(\Leftrightarrow x-15^0=30^0+k180^0\)

\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)

Lightning Farron
8 tháng 9 2016 lúc 21:05

Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)

\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)

\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)

\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)

\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)

Lightning Farron
8 tháng 9 2016 lúc 21:22

cái bài dưới là phần f)cot3x=tan 2pi/5

Bình Trần Thị
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 23:00

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)