Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
michelle holder
Xem chi tiết
Neet
23 tháng 7 2017 lúc 10:05

\(PT\Leftrightarrow x+2+x-2+3\sqrt[3]{\left(x+2\right)\left(x-2\right)}\left(\sqrt[3]{x+2}+\sqrt[3]{x-2}\right)=5x\)

\(\Leftrightarrow\sqrt[3]{\left(x+2\right)\left(x-2\right).5x}=x\)

\(\Leftrightarrow x^3=5x\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow x\left(x^2-5x^2+20\right)=0\)

\(\Leftrightarrow4x\left(5-x^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

Ngu Người
Xem chi tiết
Trần Đức Thắng
3 tháng 9 2015 lúc 22:19

 

Đặt x^2 + 5x = t 

pt <=> t + 2 = \(2\sqrt[3]{t-2}\)

=> (  t+  2 )^3 = \(8\left(t-2\right)\)

=> t^3 + 6t^2 + 12t + 8 - 8t + 16 = 0 

=> t^3 + 6t^2 + 4t + 24 = 0 

=> ( t + 6 ) ( t^2 + 4 ) = 0

=> t = -6 ( t^2 + 4 > = 0 )

(+) x^2 + 5x = -6 

=> x^2 + 5x + 6 = 0 

tự giải nha 

 

Lê Chí Cường
3 tháng 9 2015 lúc 22:17

Ngu Người bạn hoc lớp mấy?

Ngu Người
3 tháng 9 2015 lúc 22:35

Trần Đức Thắng nhầm

ILoveMath
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
luu thao
Xem chi tiết
luu thao
15 tháng 8 2016 lúc 15:32

.

CAO ĐỨC TÂM
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 12 2021 lúc 22:35

Đặt \(\sqrt{x^2-5x+5}=t>0\)

\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất của pt

\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

hiền nguyễn
Xem chi tiết
Trần Tuấn Hoàng
28 tháng 4 2023 lúc 22:23

\(Đk:x\ge\dfrac{3}{2}\Rightarrow x>0\)

\(x^3-4x^2+5x-1-\sqrt{2x-3}=0\)

\(\Leftrightarrow2x^3-8x^2+10x-2-2\sqrt{2x-3}=0\)

\(\Leftrightarrow\left(2x^3-8x^2+8x\right)+\left[\left(2x-3\right)-2\sqrt{2x-3}+1\right]=0\)

\(\Leftrightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2\ge0\left(x>0\right)\\\left(\sqrt{2x-3}-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow2x\left(x-2\right)^2+\left(\sqrt{2x-3}-1\right)^2\ge0\)

Do đó: \(\left\{{}\begin{matrix}2x\left(x-2\right)^2=0\\\left(\sqrt{2x-3}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=2\)

Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.

 

Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 21:48

x^3-4x^2+5x-1-căn 2x-3=0

=>\(x^3-4x^2+5x-2-\left(\sqrt{2x-3}-1\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2-\dfrac{2x-3-1}{\sqrt{2x-3}+1}=0\)

=>\(\left(x-2\right)\left[\left(x-1\right)\left(x-2\right)-\dfrac{2}{\sqrt{2x-3}+1}\right]=0\)

=>x-2=0

=>x=2

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 22:12

\(ĐK:x\in R\)

Đặt \(\sqrt{x^2+3}=t\left(t\ge0\right)\)

\(PT\Leftrightarrow2t^2-\left(7x+1\right)t+3x^2+3x=0\\ \Delta=\left(7x+1\right)^2-4\cdot2\left(3x^2+3x\right)=25x^2-10x+1=\left(5x-1\right)^2\ge0\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{7x+1-5x+1}{4}\\t=\dfrac{7x+1+5x-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{2x+2}{4}=\dfrac{x+1}{2}\\t=\dfrac{12x}{4}=3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=\dfrac{x+1}{2}\\\sqrt{x^2+3}=3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3=\dfrac{x^2+2x+1}{4}\\x^2+3=9x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x^2-2x+11=0\\x^2=\dfrac{3}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\Delta=4-132< 0\\\left[{}\begin{matrix}x=\dfrac{\sqrt{6}}{4}\\x=-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{\sqrt{6}}{4};\dfrac{\sqrt{6}}{4}\right\}\)

Hokage Naruto
Xem chi tiết
Akai Haruma
15 tháng 6 2021 lúc 1:14

Lời giải:

ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow x(\sqrt{x+1}-2)+(x+5)(\sqrt{x+6}-3)=x^2-9\)

\(\Leftrightarrow x.\frac{x-3}{\sqrt{x+1}+2}+(x+5).\frac{x-3}{\sqrt{x+6}+3}-(x-3)(x+3)=0\)

\(\Leftrightarrow (x-3)\left[\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\right]=0\)

Ta sẽ cm pt chỉ có nghiệm $x=3$ bằng cách chỉ ra biểu thức trong ngoặc vuông luôn âm.

Nếu $-1\leq x< 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{3}-(x+3)=\frac{-2(x+4)}{3}< 0\)

Nếu $x\geq 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\leq \frac{x}{2}+\frac{x+5}{3}-(x+3)=\frac{-(x+8)}{6}<0\)

Vậy........