tìm GTLN của A biết :
A = \(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
A=\(\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x+1}}{\sqrt{x}-1}\)
a)cm A>-3
b) tìm GTLN của A
Xin lỗi online math em lỡ spam rồi đừng trừ diem a
A =\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)Tìm GTLN or GTNN của A
Với \(x=0\Rightarrow A=0\)
Với \(x>0\Rightarrow A=\frac{4}{3\sqrt{x}+\frac{3}{\sqrt{x}}-3}\le\frac{4}{3\sqrt{3\sqrt{x}.\frac{3}{\sqrt{3}}}-3}=\frac{2}{3}\)
\(\Rightarrow A_{max}=\frac{2}{3}\) khi \(x=1\)
tìm GTLN của A=\(\frac{12}{x^5+3x^3+2\sqrt{x}+4}\)
ĐKXĐ x x > hoặc bằng 0
Do x > hoặc bằng 0 nên (x^5 + 3x^3 + 2 căn x) > hoặc bằng 0
=> x^5 + 3x^3 + 2 căn x + 4 > hoặc bằng 4
=> A < hoặc bằng 3
Vậy max A bằng 3 khi và chỉ khi x = 0
Ko liên quan nhưng tick cho mình bạn nhé ^^
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
với \(x\ge0,x\ne9\)
a, rút gọn A
b, tìm x để \(A=\frac{1}{3}\)
c,tìm GTLN của A
a) \(A=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3}{\sqrt{x}+3}\)
b) \(A=\frac{1}{3}=>\frac{3}{\sqrt{x}+3}=\frac{1}{3}\)
\(=>\sqrt{x}+3=9\)
\(=>\sqrt{x}=6=>x=36\)
c) \(A\)\(lớn\)\(nhất\)\(< =>\frac{3}{\sqrt{x}+3}lớn\)\(nhất\)
\(=>\sqrt{x}+3\)\(nhỏ\)\(nhất\)
\(Mà\)\(\sqrt{x}+3>=3
\)
\(Do\)\(đó\)\(\sqrt{x}+3=3=>x=0\)
a)tính P=(\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)+\(\frac{\sqrt{x}}{\sqrt{x}-3}\)-\(\frac{3x+3}{x-9}\)):(\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1)
b) tìm giá trị của x để P<\(\frac{1}{3}\)
c) tìm giá trị của x để P có GTLN
a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)
cho \(B=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)
a)rút gọn
b) chứng minh B>-3
c)tìm GTLN của B
Cho \(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)
a. Rút gọn P
b. C/m: P> -3
c. Tìm GTLN của P
a) Điều kiện xác định : \(x\ge0;x\ne1\)
\(P=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}=\frac{10\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)
b) Ta có : \(P=\frac{7-3\sqrt{x}}{\sqrt{x}+4}=\frac{-3\left(\sqrt{x}+4\right)+19}{\sqrt{x}+4}=\frac{19}{\sqrt{x}+4}-3>-3\)
c) Theo b) : \(P=\frac{19}{\sqrt{x}+4}-3\)
Ta có : \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+4\ge4\Leftrightarrow\frac{19}{\sqrt{x}+4}\le\frac{19}{4}\Leftrightarrow\frac{19}{\sqrt{x}+4}-3\le\frac{7}{4}\)
\(\Rightarrow P\le\frac{7}{4}\) . Dấu "=" xảy ra khi x = 0
Vậy P đạt giá trị lớn nhất bằng \(\frac{7}{4}\) , khi x = 0
Cho P=\(\frac{10\sqrt{x}}{x+3x-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\) ??
a) Tìm ĐKXĐ và rút gọc P
b) CMR: P>3
c) Tìm GTLN của P?
Tìm GTLN của biểu thức
A= \(\sqrt{-x^2+x+\frac{3}{4}}\)
B= \(\sqrt{x-2}+\sqrt{y-3}\) Biết X+Y= 6
_@Yumi, GTLN là giá trị lớn nhất đó