Tìm x :
4x(x-5) = 9(x-5)
\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)tìm giá trị của x
Ta thấy :
\(\sqrt{x^2-4x+5}=\sqrt{\left(x^2-4x+4\right)+1}=\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\)
\(\sqrt{x^2-4x+8}=\sqrt{\left(x^2-4x+4\right)+4}=\sqrt{\left(x-2\right)^2+4}\ge\sqrt{4}=2\)
\(\sqrt{x^2-4x+9}=\sqrt{\left(x^2-4x+4\right)+5}=\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\ge3+\sqrt{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{\left(x-2\right)^2+1}=1\\\sqrt{\left(x-2\right)^2+4}=2\\\sqrt{\left(x-2\right)^2+5}=\sqrt{5}\end{cases}\Rightarrow x=2}\)
Vậy \(x=2\)
\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Vế trái \(T\ge\sqrt{1}+\sqrt{4}+\sqrt{5}=3+\sqrt{5}\)
Dấu "=" xảy ra khi và chỉ khi (x-2)2=0 <=> x=2
Tìm x: a) x^2-4=8(x-2) b) x^2-4x 4=9(x-2) c) 4x^2-12x 9=(5-x)^2
Tìm x:
a)(x+3)2-4x-12=0
b)x(x+5)(x-5)-(x-3)(x2+3x+9)=7
a) (x + 3)^2 - 4x - 12 = 0
<=> (x + 3)^2 - 4(x + 3) = 0
<=> (x + 3)(x - 1) = 0
<=> x = -3 hoặc x = 1
b) x(x + 5)(x- 5) - (x - 3)(x^2 + 3x + 9) = 7
<=> x^3 - 25x - x^3 + 27 = 7
<=> -25x + 27 = 7
<=> x = 4/5
a/ \(\left(x+3\right)^2-4x-12=0\)
\(\left(x+3\right)^2-4\left(x+3\right)=0\)
\(\left(x+3\right)\left(x+3-4\right)=0\)
\(\left[{}\begin{matrix}x+3=0\Rightarrow x=-3\\x+3-4=0\Rightarrow x=1\end{matrix}\right.\)
---
b/ \(x\left(x+5\right)\left(x-5\right)-\left(x-3\right)\left(x^2+3x+9\right)=7\)
\(x\left(x^2-25\right)-\left(x^3-27\right)=7\)
\(x^3-25x-x^3+27=7\)
\(-25x=-20\)
\(x=\dfrac{20}{25}=\dfrac{4}{5}\)
a, <=>x2 +6x+9-4x-12=0
<=> x2 +2x -3=0
<=> x2 +3x -x-3=0
<=> x.(x+3) - (x+3) =0
<=> (x-1)(x+3)=0
<=> x=1 hoặc x=-3
b, <=> x(x2 -25) - (x-3)(x+3)2 -7=0
<=> x3 -25x + (9-x2) (x+3) -7=0
<=> x3 -25x+ 9x+27-x3 -3x2 -7=0
<=> -3x2 -16x +20=0
<=>(3x-10)(x-2) =0 (đoạn này tự phân tích nha ^ ^)
<=> x= 10/3 hoặc x=2
Chúc bạn học tốt nha!
tìm x biết
câu 9 :x ³-2x ²-x+2=0
câu 10 :x ³-2x ²-x+2=0
câu 11 :x ²+4x-5=0
câu 12 :2x ²+4x+2=72
câu 13 :x(x-5)(x+5)-(x+2)(x ²-2x+4)=17
câu 14 :2x ³+5x ²-12x=0
Câu 9:
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
\(9,\Leftrightarrow x^2\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow x^2+5x-x-5=0\\ \Leftrightarrow\left(x+5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ 12,\Leftrightarrow\left(x+1\right)^2-36=0\\ \Leftrightarrow\left(x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\\ 13,\Leftrightarrow x^3-25x-x^3-8=17\\ \Leftrightarrow-25x=25\Leftrightarrow x=-1\\ 14,\Leftrightarrow x\left(2x^2+8x-3x-12\right)=0\\ \Leftrightarrow x\left(x+4\right)\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(9,x^3-2x^2-x+2=0\\ \Rightarrow x^2\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x^2-1\right)\left(x-2\right)=0\\ \Rightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)
\(10,\) giống 9
\(11,x^2+4x-5=0\\ \Rightarrow\left(x^2-x\right)+\left(5x-5\right)=0\\ \Rightarrow x\left(x-1\right)+5\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
\(12,2x^2+4x+2=72\\ \Rightarrow2x^2+4x-70=0\\ \Rightarrow x^2+2x-35=0\\ \Rightarrow\left(x^2-5x\right)+\left(7x-35\right)=0\\ \Rightarrow x\left(x-5\right)+7\left(x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)
\(13,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\\ \Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=17\\ \Rightarrow x^3-25x-x^3-8=17\\ \Rightarrow-25x=25\\ \Rightarrow x=-1\)
\(14,2x^3+5x^2-12x=0\\ \Rightarrow x\left(2x^2+5x-12\right)=0\\ \Rightarrow x\left[\left(2x^2+8x\right)-\left(3x+12\right)\right]=0\\ \Rightarrow x\left[2x\left(x+4\right)-3\left(x+4\right)\right]=0\\ \Rightarrow x\left(2x-3\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\\x=-4\end{matrix}\right.\)
tìm x bt
a)x(x-5)-4x+20=0
b)x(x+6)-7x-42=0
c)x^3-5x^2-x+5=0
d)4x^2-25-(2x-5)(3x+7)=0
e)x^3+27+(x+3)(x-9)=0
giúp mk vs ah!!1
a) x(x - 5) - 4x + 20 = 0
\(\Leftrightarrow\) x(x - 5) - (4x + 20)
\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x - 4)
Khi x - 5 = 0 hoặc x - 4 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 4
Vậy S = \(\left\{5;4\right\}\)
b) x(x + 6) - 7x - 42 = 0
\(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0
\(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0
\(\Leftrightarrow\) (x + 6)(x - 7) = 0
Khi x - 6 = 0 hoặc x - 7 = 0
\(\Leftrightarrow\) x = 6 \(\Leftrightarrow\) x = 7
Vậy S = \(\left\{6;7\right\}\)
c) x3 - 5x2 - x + 5 = 0
\(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0
\(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x2 - 1) = 0
\(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0
Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 1 \(\Leftrightarrow\) x = -1
Vậy S = \(\left\{5;1;-1\right\}\)
d) 4x2 - 25 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0
\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0
Khi 2x - 5 = 0 hoặc -x + 12 = 0
\(\Leftrightarrow\) 2x = 5 \(\Leftrightarrow\) -x = -12
\(\Leftrightarrow\) x = \(\dfrac{5}{2}\) \(\Leftrightarrow\) x = 12
Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)
e) x3 + 27 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0
\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0
\(\Leftrightarrow\) (x - 3)x(x - 2)
Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x = 3 \(\Leftrightarrow\) x = 2
Vậy S = \(\left\{3;0;2\right\}\)
Chúc bạn học tốt
a) Ta có: \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
b) Ta có: \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
c) Ta có: \(x^3-5x^2-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
d) Ta có: \(4x^2-25-\left(2x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-3x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)
2 TÌM X
X- 9 = 21:5
X = ............................
X = ............................
X : 3 = 1,248 : 4
X = ..........................
X = ............................
X- 9 = 21:5
X- 9 = 4,2
x = 4,2 + 9
x = 13,2
X : 3 = 1,248 : 4
X : 3 = 0,312
x = 0,312 x 3
x = 0,936
x - 9 = 4,2
x = 4,2 + 9 =13,2
x : 3 = 0,312
x = 0,312 x 3 = 0,936
Tìm x biết: |x+3|+|x+9|+|x+5|=4x
Ta có:
x thuộc Z => |x + 3|; |x + 9|; |x + 5| > hoặc = 0
=> 4x > hoặc = 0
=> x > hoặc = 0
=> x + 3; x + 9; x + 5 > 0
=> |x + 3| = x + 3
và |x + 9| = x + 9
và |x + 5| = x + 5
=> x + 3 + x + 5 + x + 9 = 4x
=> 3x + 17 = 4x
=> 3x - 4x = 17
=> (-1)x = 17
=> x = -17
tìm x
x^2-9=2(x+3)^2
4x^2-4x+1=(5-x)^2
Ta có : x2 - 9 = 2(x + 3)2
=> x2 - 9 - 2(x + 3)2 = 0
=> x2 - 9 - 2(x2 + 6x + 9) = 0
=> x2 - 9 - 2x2 - 12x - 9 = 0
=> -x2 - 12x - 18 = 0
=> sai đề trầm trọng
\(x^2-9=2\left(x+3\right)^2\)
\(x^2-9=2\left(x^2+6x+9\right)\)
\(x^2-9=2x^2+12x+18\)
\(x^2-9-2x^2-12x-18=0\)
\(-x^2-12x-27=0\)
\(-\left(x^2+12x+27\right)=0\)
\(-\left(x^2+12x+36-9\right)=0\)
\(-\left(x^2+12x+36\right)-9=0\)
\(-\left(x+6\right)^2-3^2=0\)
\(\left(x-6\right)^2-3^2=0\)
\(\left(x-6-3\right)\left(x-6+3\right)=0\)
\(\left(x-9\right)\left(x-3\right)=0\)
\(\orbr{\begin{cases}x-9=0\\x-3=0\end{cases}}=>\orbr{\begin{cases}x=9\\x=3\end{cases}}\)
vậy \(x=9\) hoặc \(x=3\)
\(4x^2-4x+1=\left(5-x\right)^2\)
\(\left(2x-1\right)^2=\left(5-x\right)^2\)
\(2x-1=5-x\)
\(2x+x=5+1\)
\(3x=6\)
\(x=2\)
vậy \(x=2\)
tìm x biết 4x/1*5+4x/5*9+4x/9*13+4x/13*17=8/34
giúp mình với
tìm x , biết
a. 4x(x-5)-(x-1)(4x-3)=5
b. (3x-4)(x-2) = 3x(x-9)-3
c.2(x+3)-x2 -3x=0
d. 8x3-50x=0
e. (4x-30)2-3x(3-4x)
\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a.
4x(x-5) - (x-1)(4x-3)-5=0
4x^2-20x-4x^2+3x+4x+3=0
(4x^2-4x^2)+(-20x+3x+4x)+3=0
13x+3 = 0
13x=-3
x=-3/13
b,
(3x-4)(x-2)-3x(x-9)+3=0
3x^2-6x-4x+8 - 3x^2+27x+3=0
(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0
17x+11=0
17x=-11
x=-11/17
c, 2(x+3)-x^2-3x=0
2(x+3) - x(x+3)=0
(x+3)(2-x)=0
TH1: x+3 = 0; x=-3
TH2: 2-x=0;x=2