cho y=(2-m\(^2\))x+m-5(d1)
y=mx+3m-7(d2)
tìm m để (d1)song song (d2)
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng d1: mx + y = 3m – 1 và d2: x + my = m + 1.
a) Tìm tọa độ giao điểm của d1 và d2 khi m = 2.
b) Tìm m để d1 và d2 song song? Tìm m để d1 và d2 trùng nhau?
c) Tìm m để d1 cắt d2 tại điểm có tọa độ (x ; y) sao cho biểu thức P = xy đạt giá trị nhỏ nhất
\(d_1:mx+y=3m-1.\\ \Leftrightarrow-mx+3m-1=y.\)
\(d_2:x+my=m+1.\\ \Leftrightarrow my=-x+m+1.\\\Leftrightarrow y=\dfrac{-x}{m}+\dfrac{m}{m}+\dfrac{1}{m}.\Leftrightarrow y=-\dfrac{1}{m}x+1+\dfrac{1}{m}.\)
Thay m = 2 vào phương trình đường thẳng d1 ta có:
\(-2x+3.2-1=y.\\ \Leftrightarrow-2x+5=y.\)
Thay m = 2 vào phương trình đường thẳng d2 ta có:
\(y=-\dfrac{1}{2}x+1+\dfrac{1}{2}.\\ \Leftrightarrow y=\dfrac{-1}{2}x+\dfrac{3}{2}.\)
Xét phương trình hoành độ giao điểm của d1 và d2 ta có:
\(-2x+5=\dfrac{-1}{2}x+\dfrac{3}{2}.\\ \Leftrightarrow\dfrac{-3}{2}x=-\dfrac{7}{2}.\\ \Leftrightarrow x=\dfrac{7}{3}.\)
\(\Rightarrow y=\dfrac{1}{3}.\)
Tọa độ giao điểm của d1 và d2 khi m = 2 là \(\left(\dfrac{7}{3};\dfrac{1}{3}\right).\)
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng d1: mx + y = 3m – 1 và d2: x + my = m + 1.
Tìm m để d1 và d2 song song? Tìm m để d1 và d2 trùng nhau?
cho hàm số (d1):y=(2.m+3).x+4 và hàm số (d2):y=mx+5.Tìm m để đồ thị (d1) song song với (d2)
Hai đồ thị song song khi:
\(\left\{{}\begin{matrix}2m+3=m\\4\ne5\end{matrix}\right.\) \(\Rightarrow m=-3\)
cho 2 hàm só y=(2-m)x + 5 (d1) và y= ( m-4)x - 7 (d2) a) tìm điều kiện của m để d1 và d2 hàm số bậc nhất b) tìm điều kiện của m để d1 song song với d2 c) tìm điều kiện của m để d1 cắt d2
\(a,\Leftrightarrow\left\{{}\begin{matrix}2-m>0\\m-4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m>4\end{matrix}\right.\Leftrightarrow m\in\varnothing\\ b,\Leftrightarrow2-m=m-4\Leftrightarrow m=3\\ c,\Leftrightarrow2-m\ne m-4\Leftrightarrow m\ne3\)
1) cho ba đường thẳng (d1):y=x+2 ; (d2):y=2x+1 ; (d3):y=(m^2+1)x+m..... a) tìm m để d2 song song d3.... b) tìm m để (d1); (d2); (d3) đồng quy tại một điểm
a, để (d2)//(d3)
\(< =>\left\{{}\begin{matrix}m^2+1=2\\m\ne1\end{matrix}\right.\)\(< =>m=-1\)
b, pt hoành độ giao điểm (d1)(d2)
\(x+2=2x+1< =>x=1=>y=3\)
\(pt\) hoành độ (d2)(d3)
\(2x+1=\left(m^2+1\right)x+m< =>2+1=\left(m^2+1\right)2+m\)
\(=>m=0,5\)
Cho hàm số
(d1)y=mx-2(m+2)
(d2)y=(2m-3)x+(m^2-1)
Tìm m để a)(d1)cắt (d2)
b)(d1) song song (d2)
c)(d1) vuông góc (d2)
d)(d1) trùng (d2)
a)(d1) và (d2) cắt nhau <=>m≠2m-3
<=>-m≠-3
<=>m≠3
Vậy với m≠3 thì (d1) cắt (d2)
lm tương tự nhé theo đk
cắt nhau <=>a≠a'
//<=>a=a' và b≠b'
trùng nhau a=a' ,b=b'
vuông góc a.a'=-1
Cho 2 đường thẳng (d1):
y = m(x+2);(d2):y=(2m-3)x+2 Tìm m để:
a) (d1) và (d2) song song với nhau.
b) (d1) và (d2) trùng với nhau.
c) (d1) và (d2) vuông góc với nhau.
a) \(\left(d_1\right):y=mx+2m\)
\((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Rightarrow m=3\)
b) \(\left(d_1\right)\equiv\left(d_2\right)\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Rightarrow\) không có m thỏa
c) \(\left(d_1\right)\bot\left(d_2\right)\Rightarrow m.\left(2m-3\right)=-1\Rightarrow2m^2-3m+1=0\)
\(\Rightarrow\left(m-1\right)\left(2m-1\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{2}\end{matrix}\right.\)
Ta có: (d1): y=m(x+2)
nên y=mx+2m
a) Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2m=-3\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Leftrightarrow m=3\)
b) Để (d1) trùng với (d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Tìm m để
a) đường thẳng (d1): y= (2-m2)x- m-5 song song với (d2): y= -2x +2m +1
b) (d1): y= (2m+1)x-(2m+3) song song với (d2): y= m(x+1)-x
c) (d1):y= m2x+ 1-4m giao với (d2): y= -1/4x+1 tại 1 điểm nằm trên trục hoành
(a) \(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2-m^2=-2\\-m-5\ne2m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-3\end{matrix}\right.\)
\(\Rightarrow m=\pm2.\)
(b) Viết lại phương trình đường thẳng \(\left(d_2\right)\) thành \(\left(d_2\right):y=\left(m-1\right)x+m\).
\(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2m+1=m-1\\-\left(2m+3\right)\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow m=-2.\)
(c) Phương trình hoành độ giao điểm của \(\left(d_1\right),\left(d_2\right):\)
\(m^2x+1-4m=-\dfrac{1}{4}x+1\)
\(\Leftrightarrow\left(m^2+\dfrac{1}{4}\right)x=4m\Leftrightarrow x=\dfrac{4m}{m^2+\dfrac{1}{4}}=\dfrac{16m}{4m^2+1}\).
Thay vào \(\left(d_2\right)\Rightarrow y=-\dfrac{1}{4}\cdot\dfrac{16m}{4m^2+1}+1=-\dfrac{4m}{4m^2+1}+1\).
Do hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành \(\Rightarrow y=-\dfrac{4m}{4m^2+1}+1=0\)
\(\Leftrightarrow m=\dfrac{1}{2}\).
Cho đường thẳng (d1): y=(m-1)x+m-2 và đường thẳng (d2): y=-2x+3. Tìm giá trị của m để hai đoạn thẳng (d1) và (d2) song song với nhau
Để (d1 ) và (d2 ) song song thì
+) b≠b'
⇔m-2≠3
⇔m≠5
+) a=a'
⇔m-1=-2
⇔m=-1 (thỏa mãn điều kiện)
Vậy tại m=-1 thì (d1) // (d2)