cho số thực x tìm GTNN
\(\sqrt{x-2012-2\sqrt{x-2013}}+\sqrt{x+12-90\sqrt{x-2013}}\)
Cho số thực x tìm GTNN của biểu thức
\(A=\sqrt{x-2012-2\sqrt{x-2013}}+\sqrt{x+12-90\sqrt{x-2013}}\)
ĐKXĐ: \(x-2013\ge0\Leftrightarrow x\ge2013\)
Ta có:
\(A=\sqrt{x-2013-2\sqrt{x-2013}+1}+\sqrt{x-2013-90\sqrt{x-2013}+2025}\)
\(=\sqrt{\left(\sqrt{x-2013}-1\right)^2}+\sqrt{\left(\sqrt{x-2013}-45\right)^2}\)
\(=\left|\sqrt{x-2013}-1\right|+\left|\sqrt{x-2013}-45\right|\)
\(=\left|\sqrt{x-2013}-1\right|+\left|45-\sqrt{x-2013}\right|\)
\(\ge\left|\sqrt{x-2013}-1+45-\sqrt{x-2013}\right|\)
\(=\left|-1+45\right|=\left|44\right|=44\)
Vậy GTNN của A là 44, đạt được khi và chỉ khi \(\left(\sqrt{x-2013}-1\right)\left(45-\sqrt{x-2013}\right)\ge0\)
\(\Leftrightarrow1\le\sqrt{x-2013}\le45\)
\(\Leftrightarrow1\le x-2013\le2025\)
\(\Leftrightarrow2014\le x\le4038\left(tm\right)\)
cho số thực x tìm GTNN của biểu thức :
\(A=\sqrt{x-2021-2\sqrt{x-2013}}+\sqrt{x+12-90\sqrt{x-2013}}\)
Các số thực x, y, z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:
\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)
Vai trò \(x,y,z\) bình đẳng
Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:
\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)
\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)
\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)
\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)
Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)
Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)
Cho x,y là các số thực , với : \(x\ge\sqrt{2013}+\sqrt{2014};x+y\ge\sqrt{2013}+\sqrt{2014}+\sqrt{2015}\)
\(\text{Tìm GTNN của : }S=x^2+y^2\)
mk mới có lớp 6 ak nhìn ko hiểu gì cả
Cho \(x,y,z\) thỏa mãn
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Giả sử z là số lớn nhất trong 3 số
Từ đề bài ta có:
\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)
\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)
\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)
Ta lại có:
\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)
Dấu = xảy ra khi x = y = z
Tương tự cho trường hợp x lớn nhất với y lớn nhất.
fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit
Tìm GTNN của A :
A = \(\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)
Áp dụng BĐT AM-GM ta có:
\(A=\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)\(=\frac{2011x+2013}{\sqrt{1-x^2}}+2012\)
\(=\frac{2012\left(x+1\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2012\)\(\ge\frac{2\sqrt{2012\left(x+1\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2012\)
\(\ge\frac{2\sqrt{2012\left(1-x^2\right)}}{\sqrt{1-x^2}}+2012=2\sqrt{2012}+2012\)
Cho \(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}\)\(=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\)\(=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)
Chứng minh: \(x=y=z.\)
Giải phương trình :a,\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
b,\(\sqrt{x^2 +1-2x}+\sqrt{x^2+4-4x}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
c,\(x^2-x-1=\sqrt{8x+1}\)
Giải phương trình :a,\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
b,\(\sqrt{x^2 +1-2x}+\sqrt{x^2+4-4x}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
c,\(x^2-x-1=\sqrt{8x+1}\)
a,
\(\Leftrightarrow\sqrt{1-x}=\frac{x-1}{\sqrt{6-x}+\sqrt{-5-2x}}\)
\(\Leftrightarrow-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\\-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\end{cases}}\)
b,tự nàm
c,
\(\Leftrightarrow64x^2-64x-64=64\sqrt{8x+1}\)
\(\Leftrightarrow\left(8x+1\right)^2=10\left(8x+1\right)+64\sqrt{8x+1}+55\)
đặt \(\sqrt{8x+1}=a\)
=>a4=10a2+64a+55
nhận thấy phương trình có dạng x4=ax2+bx+c
tìm số m sao cho b2-4(2m+a)(m2+c)=0
sau đó đưa về (x2+m)2=k2 với k là 1 số bất kì,sau đó giải ra
b)đk \(x\ge1\)
\(\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}=\sqrt{\frac{\left(x+1\right)^2+x^2.\left(x+1\right)^2+x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{x^4+2x^3+3x^2+2x+1}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{\left(x^2+x+1\right)^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\frac{x^2+x+1}{x+1}+\frac{x}{x+1}=x+1\)
\(\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=2013\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2013\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2013\)
\(\Leftrightarrow x+\left|x-2\right|=2014\)
giai 2 pt
pt1 x+x-2=2014
x=1008
pt2 x+2-x=2014(vô lý)