Giải hệ phương trình
\(\left\{{}\begin{matrix}3x-2y+5z=14\\6x+3y+2z=18\\2x+3y-3z=-1\end{matrix}\right.\)
Bạn xem lại đề, ở pt thứ nhất là \(3x-2y+5x=14\) hay \(3x-2y+5z=14\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}x-2y+z=\\2x-y+3z=18\\-3x+3y+2z=-9\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+z=7\\3x-2y+2z=5\\4x-y+3z=10\end{matrix}\right.\)
b) Đặt \(\left\{{}\begin{matrix}x+y+z=7\left(1\right)\\3x-2y+2z=5\left(2\right)\\4x-y+3z=10\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right)+\left(2\right)\) ta có: \(4x-y+3z=12\). (4)
Từ (3) và (4): \(\left\{{}\begin{matrix}4x-y+3z=12\\4x-y+3z=10\end{matrix}\right.\) (vô nghiệm).
Vậy hệ phương trình vô nghiệm.
Bài 2 : giải hệ phương trình
a , \(\left\{{}\begin{matrix}3x-4y=2\\-5x-3y=4\end{matrix}\right.\)
b , \(\left\{{}\begin{matrix}2x-3y+2z=4\\-4x+2y+5z=-2\\2x+5y+3z=8\end{matrix}\right.\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}15x-20y=10\\-15x-9y=12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-29y=22\\x=\frac{4y+2}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-\frac{22}{29}\\x=-\frac{10}{29}\end{matrix}\right.\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y+2z=4\\-4y+9z=6\\8y+z=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y+2z=4\\-4y+9z=6\\19z=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z=\frac{16}{19}\\y=\frac{15}{38}\\x=\frac{7}{4}\end{matrix}\right.\)
Giải các hệ phương trình :
a) \(\left\{{}\begin{matrix}x+2y-3z=2\\2x+7y+z=5\\-3x+3y-2z=-7\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}-x-3y+4z=3\\3x+4y-2z=5\\2x+y+2z=4\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x+2y-3z=2\\2x+7y+z=5\\-3x+3y-2z=-7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2y-3z=2\\3y+7z=1\\-32z=-4\end{matrix}\right.\)
Đáp số : \(\left(x,y,z\right)=\left(\dfrac{55}{24},\dfrac{1}{24},\dfrac{1}{8}\right)\)
b) \(\left\{{}\begin{matrix}-x-3y+4z=3\\3x+4y-2z=5\\2x+y+2z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\-5y+10z=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x-3y+4z=3\\-5y+10z=14\\0y+0z=-4\end{matrix}\right.\)
Phương trình cuối vô nghiệm, suy ra hệ phương trình đã cho vô nghiệm
Giải phương trình:
1. \(\left\{{}\begin{matrix}4x-2y=3\\6x-3y=5\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x-3y=5\\4x+6y=10\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3x-4y+2=0\\5x+2y=14\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=14\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Giải các hệ phương trình :
a. \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=-\dfrac{1}{7}\end{matrix}\right.\)
a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).
b) Đặt \(\left\{{}\begin{matrix}x-3y+2z=-7\left(1\right)\\-2x+4y+3z=8\left(2\right)\\3x+y-z=5\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right)-\left(2\right)\) ta được: \(3x-7y-z=-15\left(4\right)\)
Lấy \(\left(3\right)-\left(4\right)\) ta được: \(8y=20\Leftrightarrow y=\dfrac{5}{2}\).
Thay \(y=\dfrac{5}{2}\) vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}x-3.\dfrac{5}{2}+2z=-7\\-2x+4.\dfrac{5}{2}+3z=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\z=-\dfrac{1}{7}\end{matrix}\right.\).
Vậy hệ có nghiệm là: \(\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=\dfrac{-1}{7}\end{matrix}\right.\)
Giải hệ phương trình :
a. \(\left\{{}\begin{matrix}2x-3y+z=-7\\-4x+5y+3z=6\\x+2y-2z=5\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x+4y-2z=1\\-2x+3y+z=-6\\3x+8y-z=12\end{matrix}\right.\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
b.
ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)
Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:
\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)
\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)
Thay xuống pt dưới:
\(6y+y=14\Rightarrow y=2\)
\(\Rightarrow x=4\)
Giải các hệ phương trình sau bằng máy tính bỏ túi (làm tròn kết quả dến chữ số thập phân thứ hai)
a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}-2x+3y=5\\5x+2y=4\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}2x-3y+4z=-5\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}-x+2y-3z=2\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)
\(x=\dfrac{2}{41}\) ; \(y=\dfrac{-48}{41}\)
b. \(\left\{{}\begin{matrix}\text{−2x+3y=5}\\5x+2y=4\end{matrix}\right.\)
\(x=\dfrac{2}{19};y=\dfrac{33}{19}\)
c.\(\left\{{}\begin{matrix}\text{2x−3y+4z=−5}\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)
\(x=\dfrac{22}{101};y=\dfrac{131}{101};z=\dfrac{-39}{101}\)
d. \(\left\{{}\begin{matrix}\text{− x + 2 y − 3 z = 2}\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)
\(x=-4;y=\dfrac{11}{7};z=\dfrac{12}{7}\)
a)x=0,05 ; y=-1,17
b.x=0,11 ; y=1,74
c.x=0,22 ;y=1,29 z=-0.39
d.x=-4 y=1,57 z=1,71
a,\(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)
x=\(\dfrac{2}{41}=0,05\) ; y=\(\dfrac{-48}{41}=-1,17\)
b,\(\left\{{}\begin{matrix}-2x+3y=5\\5x+2y=4\end{matrix}\right.\)
x=\(\dfrac{2}{19}=0,11\) ; y=\(\dfrac{33}{19}=1,74\)
c,\(\left\{{}\begin{matrix}2x-3y+4z=-5\\-4x+5y-z=6\\3x+4y-3z=2\end{matrix}\right.\)
x=\(\dfrac{22}{101}=0,22\) ;y=\(\dfrac{131}{101}=1,29\) ; z=\(\dfrac{-39}{101}=-0,39\)
d,\(\left\{{}\begin{matrix}-x+2y-3z=2\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)
x=\(-4\) ; y=\(\dfrac{11}{7}=1,57\) ; z=\(\dfrac{12}{7}=1,71\)