a) \(\left\{{}\begin{matrix}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-3y+2z=-7\\-2x+4y+3z=8\\3x+y-z=5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=-\dfrac{1}{7}\end{matrix}\right.\)
a) Đặt \(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{matrix}\right.\)
Cộng \(\left(2\right)+\left(3\right)\) ta có:\(\left\{{}\begin{matrix}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{matrix}\right.\)
Trừ \(\left(4\right)-\left(1\right)\) ta được: \(4x=4\Leftrightarrow x=1\).
Thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}1+3y+2z=8\\2.1+2y+z=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=2\end{matrix}\right.\).
Vậy hệ phương trình có nghiệm: \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\).
b) Đặt \(\left\{{}\begin{matrix}x-3y+2z=-7\left(1\right)\\-2x+4y+3z=8\left(2\right)\\3x+y-z=5\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right)-\left(2\right)\) ta được: \(3x-7y-z=-15\left(4\right)\)
Lấy \(\left(3\right)-\left(4\right)\) ta được: \(8y=20\Leftrightarrow y=\dfrac{5}{2}\).
Thay \(y=\dfrac{5}{2}\) vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}x-3.\dfrac{5}{2}+2z=-7\\-2x+4.\dfrac{5}{2}+3z=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{14}\\z=-\dfrac{1}{7}\end{matrix}\right.\).
Vậy hệ có nghiệm là: \(\left\{{}\begin{matrix}x=\dfrac{11}{14}\\y=\dfrac{5}{2}\\z=\dfrac{-1}{7}\end{matrix}\right.\)