cho hệ pt \(\left\{{}\begin{matrix}ax+y=b\\x+ay=c^2+c\end{matrix}\right.\)với a,b,c là các tham số. Tìm điều kiện của b để với mọi a luôn tìm đc c sao cho hệ pt có nghiệm
cho hệ pt \(\left\{{}\begin{matrix}x^3-ax=y\\y^3-ay=x\end{matrix}\right.\)
a, tìm m để hệ pt có nghiệm
b, tìm m để hệ pt có 5 nghiệm
cho hệ pt \(\left\{{}\begin{matrix}x^3-ax=y\\y^3-ay=x\end{matrix}\right.\) tìm a để hệ pt có 5 nghiệm
Cho hệ phương trình \(\hept{\begin{cases}ax+y=b\\x+ay=c^2+c\end{cases}}\)
với a,b,c là các tham số. Tìm điều kiện của b
để với mọi a luôn tìm được c sao cho hệ
phương trình có nghiệm
cho hệ pt
\(\text{\left\{{}\begin{matrix}\text{ax+y=b }\\x^2-4y^2=1\end{matrix}\right.\)
tìm các giá trị của a để hệ có nghiệm với mọi b
Bài 1: Giải hệ PT \(\left\{{}\begin{matrix}\dfrac{1}{2x-2}-\dfrac{1}{y-1}=2\\\dfrac{3}{2x-2}-\dfrac{2}{y-1}=1\end{matrix}\right.\)
Bài 2 : Cho hệ PT \(\left\{{}\begin{matrix}2x+y=1\\x-my=m\end{matrix}\right.\)( m là tham số )
a) Tìm đk của m để hệ PT có nghiệm duy nhất
b) Tìm m để hệ có nghiệm thỏa mãn x > 0 và y > -1
Bài 3 : Cho hệ PT \(\left\{{}\begin{matrix}mx-y=2\\x+my=5\end{matrix}\right.\)( m là tham số )
Tìm m để hệ PT có nghiệm thỏa mãn x + y= 1 - \(\dfrac{m^2}{m^2+1}\)
Bài 1:
Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{2x-2}\\v=\dfrac{1}{y-1}\end{matrix}\right.\) (ĐK: \(x,y\ne1\))
Hệ trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}u-v=2\\3u-2v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3u-3v=6\\3u-2v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-v=5\\u-v=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=2+-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=-3\end{matrix}\right.\)
Trả lại ẩn của hệ pt:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y-1}=-5\\\dfrac{1}{2x-2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=-\dfrac{1}{5}\\2x-2=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x=\dfrac{5}{6}\end{matrix}\right.\left(tm\right)\)
cho hệ pt \(\left\{{}\begin{matrix}x-ay=1\\ax+y=2\end{matrix}\right.\)
1, giải hệ pt khi a=2
2,chứng minh hệ đã cho luôn có nghiệm
3, xác định a để hệ có nghiệm dương
Lời giải:
1. Khi $a=2$ thì \(\left\{\begin{matrix} x-2y=1\\ 2x+y=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=0\end{matrix}\right.\)
2. HPT \(\Leftrightarrow \left\{\begin{matrix} x=1+ay\\ ax+y=2\end{matrix}\right.\Rightarrow a(1+ay)+y=2\)
\(\Leftrightarrow y(a^2+1)=2-a(*)\)
Vì $a^2+1\neq 0$ với mọi $a$ nên $(*)$ có nghiệm $y$ duy nhất. $y$ duy nhất dẫn đến $x$ duy nhất
Do đó HPT đã cho luôn có nghiệm $(x,y)$ duy nhất
3.
Ta có: \(y=\frac{2-a}{a^2+1}\Rightarrow x=1+ay=\frac{2a+1}{a^2+1}\)
Để hệ có nghiệm dương thì \(\left\{\begin{matrix} \frac{2-a}{a^2+1}>0\\ \frac{2a+1}{a^2+1}>0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2-a>0\\ 2a+1>0\end{matrix}\right.\Rightarrow 2> a>\frac{-1}{2}\)
Cho hệ PT \(\left\{{}\begin{matrix}ax-y=a^2-2\\\left(a+1\right)x+ay=2a-1\end{matrix}\right.\)
Tìm a để hệ PT có nghiệm duy nhất (x;y) thỏa P= xy đạt GTLN
1.Tìm m để hệ pt: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)
a) có nghiệm duy nhấtb) vô nghiệm\(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
2.Cho hệ pt:\(\left\{{}\begin{matrix}kx-y=2\\x+ky=1\end{matrix}\right.\)
a) Giải hệ pt khi m=5
b) Gọi nghiệm của hệ pt là(x,y).Tìm số tự nhiên k để x+y=1
3.Cho hệ pt:\(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
a) giải hpt khi m=-3
b) Tìm m để hệ pt có nghiệm duy nhất (x,y) thõa mãn điều kiện \(x+y^2=1\)
4. Giải và biện luận hệ phương trình:\(\left\{{}\begin{matrix}mx+y=2m\\x+my=m+1\end{matrix}\right.\)
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)