Cho hệ pt \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
a, giải hệ pt với m = 2
b, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) trong đó x, y trái dấu
c, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) thỏa mãn x = / y /
Cho hệ pt: \(\left\{{}\begin{matrix}ax-y=2\\3x+ay=5\end{matrix}\right.\left(a\ne0\right)\)
Tìm a để hpt có nghiệm duy nhất
1.Cho hệ phương trình:
\(\left\{{}\begin{matrix}x+y+xy=2m+1\\xy\left(x+y\right)=m^2+m\end{matrix}\right.\)
CMR: hpt luôn có nghiệm mọi x
Xác định m để hpt có no duy nhất
2. Tìm liên hệ của a;b để hệ sau có nghiệm
a)\(\left\{{}\begin{matrix}x^2+y^2=2\\xy=b\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x^2-y^2=a\\2xy=b\end{matrix}\right.\)
3.Cho hpt \(\left\{{}\begin{matrix}x^2+y^2=a^2-2\\x+y=2a-3\end{matrix}\right.\)
Gọi (x;y) là no của hệ, xác định a để xy đạt gtnn
Cho HPT: \(\left\{{}\begin{matrix}\left(a+1\right)x+ay=2a-1\\ax-y=a^2-2\end{matrix}\right.\). Tìm a để HPT có nghiệm (x;y)=(0;1)
1. Tìm a để hệ có nghiệm duy nhất :\(\left\{{}\begin{matrix}xy+x+y=a+1\\x^2y+y^2x=a\end{matrix}\right.\)
2. Giải hệ : \(\left\{{}\begin{matrix}x^2y^2-xy-2=0\\x^2+y^2=x^2y^2\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(\left(m+1\right)x\right)-\left(m+1\right)y=4m\\x+\left(m-2\right)y=2\end{matrix}\right.\)
Tìm điều kiện của m để pt có nghiệm duy nhất . tìm nghiệm duy nhất đó
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
Cho hệ pt \(\left\{{}\begin{matrix}\left|x\right|+y=-1\\x^2+y^2=m\end{matrix}\right.\) tìm m để hệ pt có nghiệm
\(\left\{{}\begin{matrix}\left(a+1\right)x-y=a-1\\x+\left(a-1\right)y=2\end{matrix}\right.\)
Tìm a để hệ có nghiệm duy nhất (x;y) thỏa mãn x+y nhỏ nhất