Tính A = sin( π + x ) - cos( π/2 - x ) + cot(2π - x) + tan(3π/2 - x)
Rút gọn biểu thức D= sin(5π+x)+cos(x-π/2)+cot(3π-x)+tan(3π/2-x)
D=sin(pi+x)+sinx+cot(pi-x)+tan(pi/2-x)
=-sinx+sinx-cotx+cotx=0
Rút gọn biểu thức
\(E = cot(5π+α).cos(α-\dfrac{3π}{2})+cos(α-2π)-2.cos(\dfrac{π}{2}+α)\)\(D = sin(π+α)-cos(\dfrac{π}{2}-α)+cot(4π-α)+tan(\dfrac{5π}{2}-α)\)
cho cos a = 3/5, 3π/2 < a < 2π. Tính sin2a, sin(π - π/3)
\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow sina< 0\)
\(\Rightarrow sina=-\sqrt{1-cos^2a}=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5}\)
\(\Rightarrow sin2a=2sina.cosa=2.\left(-\dfrac{4}{5}\right).\left(\dfrac{3}{5}\right)=-\dfrac{24}{25}\)
Câu sau có nhầm đề ko nhỉ?
\(sin\left(\pi-\dfrac{\pi}{3}\right)=sin\left(\dfrac{2\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
Tìm txđ của các hàm số sau
1. y = tan ( x - 2π/3)
2. y = cot ( x + π/6)
3. y = sin căn 1+x/ 2-x
ĐKXĐ:
a. \(cos\left(x-\dfrac{2\pi}{3}\right)\ne0\Rightarrow x-\dfrac{2\pi}{3}\ne\dfrac{\pi}{2}+k\pi\Rightarrow x\ne\dfrac{\pi}{6}+k\pi\)
b. \(sin\left(x+\dfrac{\pi}{6}\right)\ne0\Rightarrow x+\dfrac{\pi}{6}\ne k\pi\Rightarrow x\ne-\dfrac{\pi}{6}+k\pi\)
c. \(\dfrac{1+x}{2-x}\ge0\Rightarrow-1\le x< 2\)
tính giá trị biểu thức
sin(x+π/5) sin(x+2π/5)+sin (x+3π/5) + sin(x+4π/5)
Cho sin a = 3/5 với π/2 < a < π Tính sin 2a , cos 2a , tan 2a , cot ( a - π/4 ) , sin a/2 , cos a/2 Cảm ơn trc❤
Sin(x-π/2)+cos(x-π)+tan(5π/2-x)+tan(x-π/2)=-2cosx
\(sin\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\pi\right)+tan\left(\dfrac{5\pi}{2}-x\right)+tan\left(x-\dfrac{\pi}{2}\right)\)
\(=-sin\left(\dfrac{\pi}{2}-x\right)+cos\left(\pi-x\right)+tan\left(2\pi+\dfrac{\pi}{2}-x\right)-tan\left(\dfrac{\pi}{2}-x\right)\)
\(=-cosx-cosx+tan\left(\dfrac{\pi}{2}-x\right)-cotx\)
\(=-2cosx+cotx-cotx=-2cosx\)
cho tan = 2√2 và π < x < 3π/2
tìm cos x/2
pi<x<3/2pi
=>cosx<0
pi<x<3/2pi
=>pi/2<1/2x<3/4pi
=>cos(x/2)<0
1+tan^2x=1/cos^2x
=>1/cos^2x=1+8=9
=>cosx=-1/3
\(cosx=2\cdot cos^2\left(\dfrac{x}{2}\right)-1\)
=>\(2\cdot cos^2\left(\dfrac{x}{2}\right)=\dfrac{2}{3}\)
=>\(cos^2\left(\dfrac{x}{2}\right)=\dfrac{1}{3}\)
=>cos(x/2)=1/căn 3
Biểu thức tan(3π/2−α)+cot(3π−α)−cos(π/2−α)+2sin(π+α) sau khi thu gọn là gì?
Online chờ gấp, đa tạ các vị!
\(tan\left(\dfrac{3\pi}{2}-\alpha\right)+cot\left(3\pi-\alpha\right)-cos\left(\dfrac{\pi}{2}-\alpha\right)+2.sin\left(\pi+\alpha\right)\)
\(=tan\left(\pi+\dfrac{\pi}{2}-\alpha\right)+cot\left(-\alpha\right)-sin\alpha+2\left(sin\pi.cos\alpha+cos\pi.sin\alpha\right)\)
\(=tan\left(\dfrac{\pi}{2}-\alpha\right)-cot\alpha-sin\alpha+2.-sin\alpha\)
\(=cot\alpha-cot\alpha-3sin\alpha\)
\(=-3sin\alpha\)
Rút gọn biểu thức
\(cos ( 5π-x)-sin(\dfrac{3π}{2}-x) + tan (\dfrac{3π}{2}-x) + cot (3π-x)\)