Cho \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\) . Hãy biểu diễn P dưới dạng tổng của 3 căn thức bậc 2
\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\) được biểu diễn dưới dạng tổng 3 căn thức bậc 2 như sau: P=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\). khi đó a+b+c=.......
\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
\(=\sqrt{2+5+7+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{5.7}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
\(\Rightarrow a+b+c=2+5+7=14\)
Biểu diễn P dưới dạng tổng 3 căn thức bậc 2:
\(P=\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}\)
\(10+\sqrt{60}-\sqrt{24}-\sqrt{40}\)
\(=10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}\)
\(=10+2\sqrt{3}.\sqrt{5}-2\sqrt{2}.\sqrt{3}-2\sqrt{2}.\sqrt{5}\)
\(=3+5+2+...\)
\(=\left(\sqrt{3}+\sqrt{5}-\sqrt{2}\right)^2\)
\(\Rightarrow P=-\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Cho \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
Được biểu diễn dưới dạng: \(P=\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Tính a+b+c
Ta có
\(P=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
\(\Leftrightarrow P=\sqrt{\left(\sqrt{5}+\sqrt{2}+\sqrt{7}\right)^2}\)
\(\Leftrightarrow P=\sqrt{5}+\sqrt{2}+\sqrt{7}\)
Mà \(P=\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{5}+\sqrt{2}+\sqrt{7}\)
Suy ra \(a+b+c=5+2+7=14\)
Biểu diễn A = \(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\) dưới dạng tổng của 3 căn thức
\(A=\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{2+3+5+2\left(\sqrt{2.3}+\sqrt{2.5}+\sqrt{3.5}\right)}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
1) Tính giá trị biểu thức A = \(\frac{\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\)
2) Cho B = \(\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}\)
a. Tìm ĐKXĐ của B và rút gọn B
b. Tính giá trị biểu thức B khi a = \(1+3\sqrt{2}\) và b = \(10+\frac{11\sqrt{8}}{3}\)
Bài 1:
$14+\sqrt{40}+\sqrt{56}+\sqrt{140}=14+\sqrt{56}+(\sqrt{40}+\sqrt{140})$
=14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}=(12+2\sqrt{35})+2+(2\sqrt{10}+2\sqrt{14})$
$=(\sqrt{5}+\sqrt{7})^2+2+2\sqrt{2}(\sqrt{5}+\sqrt{7})$
$=(\sqrt{5}+\sqrt{7}+\sqrt{2})^2$
$\Rightarrow \sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{2}+\sqrt{5}+\sqrt{7}$
\(\Rightarrow A=\frac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=1\)
Lời giải:
a) ĐKXĐ: $a,b\geq 0$ và $a,b$ không đồng thời cùng bằng $0$
\(B=\frac{2a+2\sqrt{2}a-2\sqrt{3ab}+2\sqrt{3ab}-3b-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}=\frac{2a-3b}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}=\frac{(\sqrt{2a}-\sqrt{3b})(\sqrt{2a}+\sqrt{3b})}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}\)
\(=\frac{\sqrt{2a}-\sqrt{3b}}{\sqrt{a}}=\sqrt{2}-\sqrt{\frac{3b}{a}}\)
b)
\(a=1+3\sqrt{2}; 3b=30+11\sqrt{8}\Rightarrow \frac{3b}{a}=\frac{30+11\sqrt{8}}{1+3\sqrt{2}}=\frac{(30+11\sqrt{8})(1-3\sqrt{2})}{(1+3\sqrt{2})(1-3\sqrt{2})}\)
\(=\frac{102+68\sqrt{2}}{17}=6+4\sqrt{2}=(2+\sqrt{2})^2\)
\(\Rightarrow \sqrt{\frac{3b}{a}}=2+\sqrt{2}\)
\(\Rightarrow B=\sqrt{2}-(2+\sqrt{2})=-2\)
Cho P = \(\sqrt{,14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
tính :
A=\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
B=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
\(A=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
B=\(\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
B=\(\sqrt{7+5+2+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{7.5}}\)
B=\(\left(\sqrt{\sqrt{7}+\sqrt{5}+\sqrt{2}}\right)^2\)
B=\(\sqrt{7}+\sqrt{5}+\sqrt{2}\)
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu
b) \(27-10\sqrt{2}\)
c)\(18-8\sqrt{2}\)
d)\(4-2\sqrt{3}\)
e)\(6\sqrt{5}+14\)
f)\(20\sqrt{5}+45\)
G)\(7-2\sqrt{6}\)
b)\(27-10\sqrt{2}=5^2-2.5\sqrt{2}+2=\left(5-\sqrt{2}\right)^2\)
c)\(18-8\sqrt{2}=4^2-2.4\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)
d)\(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
e)\(6\sqrt{5}+14=9+2.3\sqrt{5}+5=\left(3+\sqrt{5}\right)^2\)
f)\(20\sqrt{5}+45=5^2+2.5.2\sqrt{5}+20=\left(5+2\sqrt{5}\right)^2\)
g)\(7-2\sqrt{6}=6-2\sqrt{6}+1=\left(\sqrt{6}-1\right)^2\)
TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC TRONG CĂN BẬC 2 CÓ NGHĨA
1/\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
2/\(\sqrt{-2x+3}\)
3/\(\sqrt{-7x-14}\)
4/\(\sqrt{\dfrac{x^2+2}{1-4x}}\)
5/\(\sqrt{-5-3x}\)
1) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
2) ĐKXĐ: \(x\le\dfrac{3}{2}\)
3) ĐKXĐ: \(x\le-2\)
4) ĐKXĐ: \(x< \dfrac{1}{4}\)
5) ĐKXĐ: \(x\le-\dfrac{5}{3}\)