Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Yến Nga

1) Tính giá trị biểu thức A = \(\frac{\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\)

2) Cho B = \(\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}\)

a. Tìm ĐKXĐ của B và rút gọn B

b. Tính giá trị biểu thức B khi a = \(1+3\sqrt{2}\) và b = \(10+\frac{11\sqrt{8}}{3}\)

Akai Haruma
24 tháng 2 2020 lúc 17:06

Bài 1:

$14+\sqrt{40}+\sqrt{56}+\sqrt{140}=14+\sqrt{56}+(\sqrt{40}+\sqrt{140})$

=14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}=(12+2\sqrt{35})+2+(2\sqrt{10}+2\sqrt{14})$

$=(\sqrt{5}+\sqrt{7})^2+2+2\sqrt{2}(\sqrt{5}+\sqrt{7})$

$=(\sqrt{5}+\sqrt{7}+\sqrt{2})^2$

$\Rightarrow \sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{2}+\sqrt{5}+\sqrt{7}$

\(\Rightarrow A=\frac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=1\)

Khách vãng lai đã xóa
Akai Haruma
24 tháng 2 2020 lúc 17:24

Lời giải:

a) ĐKXĐ: $a,b\geq 0$ và $a,b$ không đồng thời cùng bằng $0$

\(B=\frac{2a+2\sqrt{2}a-2\sqrt{3ab}+2\sqrt{3ab}-3b-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}=\frac{2a-3b}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}=\frac{(\sqrt{2a}-\sqrt{3b})(\sqrt{2a}+\sqrt{3b})}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}\)

\(=\frac{\sqrt{2a}-\sqrt{3b}}{\sqrt{a}}=\sqrt{2}-\sqrt{\frac{3b}{a}}\)

b)

\(a=1+3\sqrt{2}; 3b=30+11\sqrt{8}\Rightarrow \frac{3b}{a}=\frac{30+11\sqrt{8}}{1+3\sqrt{2}}=\frac{(30+11\sqrt{8})(1-3\sqrt{2})}{(1+3\sqrt{2})(1-3\sqrt{2})}\)

\(=\frac{102+68\sqrt{2}}{17}=6+4\sqrt{2}=(2+\sqrt{2})^2\)

\(\Rightarrow \sqrt{\frac{3b}{a}}=2+\sqrt{2}\)

\(\Rightarrow B=\sqrt{2}-(2+\sqrt{2})=-2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Ngọc Hân
Xem chi tiết
Big City Boy
Xem chi tiết
Hỏi Làm Gì
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Nguyễn Thị Trà My
Xem chi tiết
em ơi
Xem chi tiết
Nguyễn Hoàng Vũ
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
hello hello
Xem chi tiết