giải phương trình sau
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
Giải phương trình:
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le6\)
\(\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14x-5\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Leftrightarrow x-5=0\) (do \(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1>0;\forall x\))
\(\Rightarrow x=5\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x+1>=0\\6-x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\x< =6\end{matrix}\right.\)
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
=>\(\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)
=>\(\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+3x^2-15x+x-5=0\)
=>\(\dfrac{3\cdot\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(3x+1\right)=0\)
=>\(\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)
=>x-5=0
=>x=5(nhận)
giải phương trình sau:
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
Giải phương trình:
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
\(DK:-\frac{1}{3}\le x\le6\)
\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)-\left(\sqrt{6-x}-1\text{ }\right)+\left(3x^2-15x\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\frac{3x+1-16}{\sqrt{3x+1}+4}-\frac{6-x-1}{\sqrt{6-x}+1}+3x\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{\sqrt{6-x}+1}+3x\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\left(n\right)\\\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+3x+1=0\left(l\right)\end{cases}}\)
Vay nghiem cua PT la \(x=5\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải phương trình:
a) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
b) \(\sqrt{2x^2-1}+x\sqrt{2x-1}=2x^2\)
c) \(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
Giải phương trình:
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
\(Pt\Leftrightarrow\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)(ĐKXĐ: \(-\frac{1}{3}\le x\le6\))
\(\Leftrightarrow\frac{3x-15}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Rightarrow x=5\)(tmđk)
Giải phương trình sau:
a)\(\sqrt{x+1}-5\sqrt{\left(x+1\right)\left(8-x\right)}+\sqrt{8-x}=3\)
b)\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
b. Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath
Giải phương trình
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
Giải phương trình : \(\sqrt{3x}+1\) - \(\sqrt{6-x}\) + 3x2 -14x - 8 = 0