Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oriana.su
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2021 lúc 9:38

\(a^3+1+1\ge3a\)

\(b^3+1+1\ge3b\)

\(c^3+1+1\ge3c\)

Cộng vế:

\(a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(Q_{min}=3\) khi \(a=b=c=1\)

le bao son
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 17:14

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

tth_new
9 tháng 12 2018 lúc 19:15

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

Bánh Bao Nhân Thịt
Xem chi tiết
ducquang050607
Xem chi tiết
Minh Hoàng Phan
Xem chi tiết
Trần Minh Hoàng
30 tháng 5 2021 lúc 21:27

Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)

Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).

Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).

Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).

Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0

missing you =
30 tháng 5 2021 lúc 21:19

Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29

Nguyễn Khánh Ly
Xem chi tiết
Phạm Thị Thu Trang
Xem chi tiết
cherry moon
Xem chi tiết
alibaba nguyễn
5 tháng 12 2019 lúc 11:13

\(\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2\)

\(\ge a^4+b^4+c^4+a^2b^2-2abc^2\)

\(=\left(a^2+b^2+c^2\right)\left(a^4+b^4+\left(c^2-ab\right)^2\right)\)

\(\ge\left(a^3+b^3+c\left(c^2-ab\right)\right)^2\)

\(=\left(a^3+b^3+c^3-abc\right)^2\ge\left(a^3+b^3+c^3-3abc\right)^2=1\)

\(\Rightarrow B\ge1\)

Khách vãng lai đã xóa
qqqqqqq
Xem chi tiết
dam quang tuan anh
9 tháng 11 2017 lúc 19:59

24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13